亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A 3D digital scene contains many components: lights, materials and geometries, interacting to reach the desired appearance. Staging such a scene is time-consuming and requires both artistic and technical skills. In this work, we propose PSDR-Room, a system allowing to optimize lighting as well as the pose and materials of individual objects to match a target image of a room scene, with minimal user input. To this end, we leverage a recent path-space differentiable rendering approach that provides unbiased gradients of the rendering with respect to geometry, lighting, and procedural materials, allowing us to optimize all of these components using gradient descent to visually match the input photo appearance. We use recent single-image scene understanding methods to initialize the optimization and search for appropriate 3D models and materials. We evaluate our method on real photographs of indoor scenes and demonstrate the editability of the resulting scene components.

相關內容

Panoramic radiography (Panoramic X-ray, PX) is a widely used imaging modality for dental examination. However, PX only provides a flattened 2D image, lacking in a 3D view of the oral structure. In this paper, we propose a framework to estimate 3D oral structures from real-world PX. Our framework tackles full 3D reconstruction for varying subjects (patients) where each reconstruction is based only on a single panoramic image. We create an intermediate representation called simulated PX (SimPX) from 3D Cone-beam computed tomography (CBCT) data based on the Beer-Lambert law of X-ray rendering and rotational principles of PX imaging. SimPX aims at not only truthfully simulating PX, but also facilitates the reverting process back to 3D data. We propose a novel neural model based on ray tracing which exploits both global and local input features to convert SimPX to 3D output. At inference, a real PX image is translated to a SimPX-style image with semantic regularization, and the translated image is processed by generation module to produce high-quality outputs. Experiments show that our method outperforms prior state-of-the-art in reconstruction tasks both quantitatively and qualitatively. Unlike prior methods, Our method does not require any prior information such as the shape of dental arches, nor the matched PX-CBCT dataset for training, which is difficult to obtain in clinical practice.

This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.

This paper aims to develop an accurate 3D geometry representation of satellite images using satellite-ground image pairs. Our focus is on the challenging problem of 3D-aware ground-views synthesis from a satellite image. We draw inspiration from the density field representation used in volumetric neural rendering and propose a new approach, called Sat2Density. Our method utilizes the properties of ground-view panoramas for the sky and non-sky regions to learn faithful density fields of 3D scenes in a geometric perspective. Unlike other methods that require extra depth information during training, our Sat2Density can automatically learn accurate and faithful 3D geometry via density representation without depth supervision. This advancement significantly improves the ground-view panorama synthesis task. Additionally, our study provides a new geometric perspective to understand the relationship between satellite and ground-view images in 3D space.

In this report, we present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task. We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training. This is in contradict to most existing methods which attempt to jointly model both the appearance and temporal representation within a single framework, which we argue, would lead to degradation in per-frame quality. Despite its simplicity, we show that MagicEdit supports various downstream video editing tasks, including video stylization, local editing, video-MagicMix and video outpainting.

Realistic image super-resolution (Real-ISR) aims to reproduce perceptually realistic image details from a low-quality input. The commonly used adversarial training based Real-ISR methods often introduce unnatural visual artifacts and fail to generate realistic textures for natural scene images. The recently developed generative stable diffusion models provide a potential solution to Real-ISR with pre-learned strong image priors. However, the existing methods along this line either fail to keep faithful pixel-wise image structures or resort to extra skipped connections to reproduce details, which requires additional training in image space and limits their extension to other related tasks in latent space such as image stylization. In this work, we propose a pixel-aware stable diffusion (PASD) network to achieve robust Real-ISR as well as personalized stylization. In specific, a pixel-aware cross attention module is introduced to enable diffusion models perceiving image local structures in pixel-wise level, while a degradation removal module is used to extract degradation insensitive features to guide the diffusion process together with image high level information. By simply replacing the base diffusion model with a personalized one, our method can generate diverse stylized images without the need to collect pairwise training data. PASD can be easily integrated into existing diffusion models such as Stable Diffusion. Experiments on Real-ISR and personalized stylization demonstrate the effectiveness of our proposed approach. The source code and models can be found at \url{//github.com/yangxy/PASD}.

This thesis enhances the autonomy of the M4 (Multi-Modal Mobility Morphobot) robot, designed for Mars and rescue missions. The research enables the robot to autonomously select its locomotion mode and path in complex terrains. Focusing on walking and flying modes, a Gazebo simulation, and custom perception-navigations pipelines are developed. Leveraging deep learning, the robot determines optimal mode transitions based on a 2.5D map. Additionally, an energy efficient path planner based on 2.5D mapping is implemented and validated in simulations. The contributions demonstrate scalability for future mode integrations. The M4 robot showcases intelligent mode switching, efficient navigation, and reduced energy consumption, bringing us closer to fully autonomous multi-modal robots for exploration and rescue missions. This work paves the way for future advancements in autonomous robotics, with the ultimate vision of deploying the M4 robot for exploration and rescue tasks, making a significant impact in the quest for intelligent and versatile robotic systems.

3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images. Despite numerous task-specific methods, developing a comprehensive model remains challenging. In this paper, we present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects. Previous studies have used two-stage approaches that rely on pretrained NeRFs as real data to train diffusion models. In contrast, we propose a new single-stage training paradigm with an end-to-end objective that jointly optimizes a NeRF auto-decoder and a latent diffusion model, enabling simultaneous 3D reconstruction and prior learning, even from sparsely available views. At test time, we can directly sample the diffusion prior for unconditional generation, or combine it with arbitrary observations of unseen objects for NeRF reconstruction. SSDNeRF demonstrates robust results comparable to or better than leading task-specific methods in unconditional generation and single/sparse-view 3D reconstruction.

The quality of text-to-image generation is continuously improving, yet the boundaries of its applicability are still unclear. In particular, refinement of the text input with the objective of achieving better results - commonly called prompt engineering - so far seems to have not been geared towards work with pre-existing texts. We investigate whether text-to-image generation and prompt engineering could be used to generate basic illustrations of popular fairytales. Using Midjourney v4, we engage in action research with a dual aim: to attempt to generate 5 believable illustrations for each of 5 popular fairytales, and to define a prompt engineering process that starts from a pre-existing text and arrives at an illustration of it. We arrive at a tentative 4-stage process: i) initial prompt, ii) composition adjustment, iii) style refinement, and iv) variation selection. We also discuss three reasons why the generation model struggles with certain illustrations: difficulties with counts, bias from stereotypical configurations and inability to depict overly fantastic situations. Our findings are not limited to the specific generation model and are intended to be generalisable to future ones.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司