亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study minimax convergence rates of nonparametric density estimation in the Huber contamination model, in which a proportion of the data comes from an unknown outlier distribution. We provide the first results for this problem under a large family of losses, called Besov integral probability metrics (IPMs), that includes $\mathcal{L}^p$, Wasserstein, Kolmogorov-Smirnov, and other common distances between probability distributions. Specifically, under a range of smoothness assumptions on the population and outlier distributions, we show that a re-scaled thresholding wavelet series estimator achieves minimax optimal convergence rates under a wide variety of losses. Finally, based on connections that have recently been shown between nonparametric density estimation under IPM losses and generative adversarial networks (GANs), we show that certain GAN architectures also achieve these minimax rates.

相關內容

Consider the task of matrix estimation in which a dataset $X \in \mathbb{R}^{n\times m}$ is observed with sparsity $p$, and we would like to estimate $\mathbb{E}[X]$, where $\mathbb{E}[X_{ui}] = f(\alpha_u, \beta_i)$ for some Holder smooth function $f$. We consider the setting where the row covariates $\alpha$ are unobserved yet the column covariates $\beta$ are observed. We provide an algorithm and accompanying analysis which shows that our algorithm improves upon naively estimating each row separately when the number of rows is not too small. Furthermore when the matrix is moderately proportioned, our algorithm achieves the minimax optimal nonparametric rate of an oracle algorithm that knows the row covariates. In simulated experiments we show our algorithm outperforms other baselines in low data regimes.

Consider two independent exponential populations having different unknown location parameters and a common unknown scale parameter. Call the population associated with the larger location parameter as the "best" population and the population associated with the smaller location parameter as the "worst" population. For the goal of selecting the best (worst) population a natural selection rule, that has many optimum properties, is the one which selects the population corresponding to the larger (smaller) minimal sufficient statistic. In this article, we consider the problem of estimating the location parameter of the population selected using this natural selection rule. For estimating the location parameter of the selected best population, we derive the uniformly minimum variance unbiased estimator (UMVUE) and show that the analogue of the best affine equivariant estimators (BAEEs) of location parameters is a generalized Bayes estimator. We provide some admissibility and minimaxity results for estimators in the class of linear, affine and permutation equivariant estimators, under the criterion of scaled mean squared error. We also derive a sufficient condition for inadmissibility of an arbitrary affine and permutation equivariant estimator. We provide similar results for the problem of estimating the location parameter of the selected population when the selection goal is that of selecting the worst exponential population. Finally, we provide a simulation study to compare, numerically, the performances of some of the proposed estimators.

We focus on the problem of manifold estimation: given a set of observations sampled close to some unknown submanifold $M$, one wants to recover information about the geometry of $M$. Minimax estimators which have been proposed so far all depend crucially on the a priori knowledge of some parameters quantifying the underlying distribution generating the sample (such as bounds on its density), whereas those quantities will be unknown in practice. Our contribution to the matter is twofold: first, we introduce a one-parameter family of manifold estimators $(\hat{M}_t)_{t\geq 0}$ based on a localized version of convex hulls, and show that for some choice of $t$, the corresponding estimator is minimax on the class of models of $C^2$ manifolds introduced in [Genovese et al., Manifold estimation and singular deconvolution under Hausdorff loss]. Second, we propose a completely data-driven selection procedure for the parameter $t$, leading to a minimax adaptive manifold estimator on this class of models. This selection procedure actually allows us to recover the Hausdorff distance between the set of observations and $M$, and can therefore be used as a scale parameter in other settings, such as tangent space estimation.

In the first part of this work, we develop a novel scheme for solving nonparametric regression problems. That is the approximation of possibly low regular and noised functions from the knowledge of their approximate values given at some random points. Our proposed scheme is based on the use of the pseudo-inverse of a random projection matrix, combined with some specific properties of the Jacobi polynomials system, as well as some properties of positive definite random matrices. This scheme has the advantages to be stable, robust, accurate and fairly fast in terms of execution time. In particular, we provide an $L_2$ as well as an $L_2-$risk errors of our proposed nonparametric regression estimator. Moreover and unlike most of the existing nonparametric regression estimators, no extra regularization step is required by our proposed estimator. Although, this estimator is initially designed to work with random sampling set of uni-variate i.i.d. random variables following a Beta distribution, we show that it is still works for a wide range of sampling distribution laws. Moreover, we briefly describe how our estimator can be adapted in order to handle the multivariate case of random sampling sets. In the second part of this work, we extend the random pseudo-inverse scheme technique to build a stable and accurate estimator for solving linear functional regression (LFR) problems. A dyadic decomposition approach is used to construct this last stable estimator for the LFR problem. Alaso, we give an $L_2-$risk error of our proposed LFR estimator. Finally, the performance of the two proposed estimators are illustrated by various numerical simulations. In particular, a real dataset is used to illustrate the performance of our nonparametric regression estimator.

In this paper several related estimation problems are addressed from a Bayesian point of view and optimal estimators are obtained for each of them when some natural loss functions are considered. Namely, we are interested in estimating a regression curve. Simultaneously, the estimation problems of a conditional distribution function, or a conditional density, or even the conditional distribution itself, are considered. All these problems are posed in a sufficiently general framework to cover continuous and discrete, univariate and multivariate, parametric and non-parametric cases, without the need to use a specific prior distribution. The loss functions considered come naturally from the quadratic error loss function comonly used in estimating a real function of the unknown parameter. The cornerstone of the mentioned Bayes estimators is the posterior predictive distribution. Some examples are provided to illustrate these results.

Imbalanced data occurs in a wide range of scenarios. The skewed distribution of the target variable elicits bias in machine learning algorithms. One of the popular methods to combat imbalanced data is to artificially balance the data through resampling. In this paper, we compare the efficacy of a recently proposed kernel density estimation (KDE) sampling technique in the context of artificial neural networks. We benchmark the KDE sampling method against two base sampling techniques and perform comparative experiments using 8 datasets and 3 neural networks architectures. The results show that KDE sampling produces the best performance on 6 out of 8 datasets. However, it must be used with caution on image datasets. We conclude that KDE sampling is capable of significantly improving the performance of neural networks.

Change point detection is becoming increasingly popular in many application areas. On one hand, most of the theoretically-justified methods are investigated in an ideal setting without model violations, or merely robust against identical heavy-tailed noise distribution across time and/or against isolate outliers; on the other hand, we are aware that there have been exponentially growing attacks from adversaries, who may pose systematic contamination on data to purposely create spurious change points or disguise true change points. In light of the timely need for a change point detection method that is robust against adversaries, we start with, arguably, the simplest univariate mean change point detection problem. The adversarial attacks are formulated through the Huber $\varepsilon$-contamination framework, which in particular allows the contamination distributions to be different at each time point. In this paper, we demonstrate a phase transition phenomenon in change point detection. This detection boundary is a function of the contamination proportion $\varepsilon$ and is the first time shown in the literature. In addition, we derive the minimax-rate optimal localisation error rate, quantifying the cost of accuracy in terms of the contamination proportion. We propose a computationally feasible method, matching the minimax lower bound under certain conditions, saving for logarithmic factors. Extensive numerical experiments are conducted with comparisons to robust change point detection methods in the existing literature.

We derive nearly sharp bounds for the bidirectional GAN (BiGAN) estimation error under the Dudley distance between the latent joint distribution and the data joint distribution with appropriately specified architecture of the neural networks used in the model. To the best of our knowledge, this is the first theoretical guarantee for the bidirectional GAN learning approach. An appealing feature of our results is that they do not assume the reference and the data distributions to have the same dimensions or these distributions to have bounded support. These assumptions are commonly assumed in the existing convergence analysis of the unidirectional GANs but may not be satisfied in practice. Our results are also applicable to the Wasserstein bidirectional GAN if the target distribution is assumed to have a bounded support. To prove these results, we construct neural network functions that push forward an empirical distribution to another arbitrary empirical distribution on a possibly different-dimensional space. We also develop a novel decomposition of the integral probability metric for the error analysis of bidirectional GANs. These basic theoretical results are of independent interest and can be applied to other related learning problems.

The reach of a set $M \subset \mathbb R^d$, also known as condition number when $M$ is a manifold, was introduced by Federer in 1959 and is a central concept in geometric measure theory, set estimation, manifold learning, among others areas. We introduce a universally consistent estimate of the reach, just assuming that the reach is positive. A necessary condition for the universal convergence of the reach is that the Haussdorf distance between the sample and the set converges to zero. Without further assumptions we show that the convergence rate of this distance can be arbitrarily slow. However, under a weak additional assumption, we provide rates of convergence for the reach estimator. We also show that it is not possible to determine if the reach of the support of a density is zero or not based on a finite sample. We provide a small simulation study and a bias correction method for the case when $M$ is a manifold.

Under mild conditions, it is shown the strong consistency of the Bayes estimator of the density. Moreover, the Bayes risk (for some common loss functions) of the Bayes estimator of the density (i.e. the posterior predictive density) reaches zero when the sample size goes to $\infty$. In passing, a similar result is obtained for the estimation of the sampling distribution.

北京阿比特科技有限公司