In this work, we develop an approach mentioned by da Veiga and Gamboa in 2013. It consists in extending the very interestingpoint of view introduced in \cite{gine2008simple} to estimate general nonlinear integral functionals of a density on the real line, by using empirically a kernel estimator erasing the diagonal terms. Relaxing the positiveness assumption on the kernel and choosing a kernel of order large enough, we are able to prove a central limit theorem for estimating Sobol' indices of any order (the bias is killed thanks to this signed kernel).
This study develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series (LSFTS). We investigate a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of an LSFTS. In particular, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions and establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss methods for testing the equality of time-varying mean functions in two functional samples.
Empirical best prediction (EBP) is a well-known method for producing reliable proportion estimates when the primary data source provides only small or no sample from finite populations. There are at least two potential challenges encountered in implementing the existing EBP methodology. First, one must accurately link the sample to the finite population frame. This may be a difficult or even impossible task because of absence of identifiers that can be used to link sample and the frame. Secondly, the finite population frame typically contains limited auxiliary variables, which may not be adequate for building a reasonable working predictive model. We propose a data linkage approach in which we replace the finite population frame by a big sample that does not have the outcome binary variable of interest, but has a large set of auxiliary variables. Our proposed method calls for fitting the assumed model using data from the smaller sample, imputing the outcome variable for all the units of the big sample, and then finally using these imputed values to obtain standard weighted proportion using the big sample. We develop a new adjusted maximum likelihood method to avoid estimates of model variance on the boundary encountered in the commonly used in maximum likelihood estimation method. We propose an estimator of mean squared prediction error (MSPE) using a parametric bootstrap method and address computational issues by developing efficient EM algorithm. We illustrate the proposed methodology in the context of election projection for small areas.
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set. Once trained by minimizing a variational objective, the learnt map provides an approximate generative model of the target distribution. Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions. For instance, such problems may appear for distributions on multi-component topologies or characterized by multiple modes with high probability regions separated by very unlikely areas. A typical symptom is the explosion of the Jacobian norm of the transformation in very low probability areas. This paper proposes to overcome this issue thanks to a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain. The approach relies on a Metropolis adjusted Langevin algorithm (MALA) whose dynamics explicitly exploits the Jacobian of the transformation. Contrary to alternative approaches, the proposed strategy preserves the tractability of the likelihood and it does not require a specific training. Notably, it can be straightforwardly used with any pre-trained NF network, regardless of the architecture. Experiments conducted on synthetic and high-dimensional real data sets illustrate the efficiency of the method.
In this paper, we propose ACA-Net, a lightweight, global context-aware speaker embedding extractor for Speaker Verification (SV) that improves upon existing work by using Asymmetric Cross Attention (ACA) to replace temporal pooling. ACA is able to distill large, variable-length sequences into small, fixed-sized latents by attending a small query to large key and value matrices. In ACA-Net, we build a Multi-Layer Aggregation (MLA) block using ACA to generate fixed-sized identity vectors from variable-length inputs. Through global attention, ACA-Net acts as an efficient global feature extractor that adapts to temporal variability unlike existing SV models that apply a fixed function for pooling over the temporal dimension which may obscure information about the signal's non-stationary temporal variability. Our experiments on the WSJ0-1talker show ACA-Net outperforms a strong baseline by 5\% relative improvement in EER using only 1/5 of the parameters.
Accurate and efficient estimation of rare events probabilities is of significant importance, since often the occurrences of such events have widespread impacts. The focus in this work is on precisely quantifying these probabilities, often encountered in reliability analysis of complex engineering systems, based on an introduced framework termed Approximate Sampling Target with Post-processing Adjustment (ASTPA), which herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC) methods. The developed techniques in this paper are applicable from low- to high-dimensional stochastic spaces, and the basic idea is to construct a relevant target distribution by weighting the original random variable space through a one-dimensional output likelihood model, using the limit-state function. To sample from this target distribution, we exploit HMCMC algorithms, a family of MCMC methods that adopts physical system dynamics, rather than solely using a proposal probability distribution, to generate distant sequential samples, and we develop a new Quasi-Newton mass preconditioned HMCMC scheme (QNp-HMCMC), which is particularly efficient and suitable for high-dimensional spaces. To eventually compute the rare event probability, an original post-sampling step is devised using an inverse importance sampling procedure based on the already obtained samples. The statistical properties of the estimator are analyzed as well, and the performance of the proposed methodology is examined in detail and compared against Subset Simulation in a series of challenging low- and high-dimensional problems.
Continuous normalizing flows are widely used in generative tasks, where a flow network transports from a data distribution $P$ to a normal distribution. A flow model that can transport from $P$ to an arbitrary $Q$, where both $P$ and $Q$ are accessible via finite samples, would be of various application interests, particularly in the recently developed telescoping density ratio estimation (DRE) which calls for the construction of intermediate densities to bridge between $P$ and $Q$. In this work, we propose such a ``Q-malizing flow'' by a neural-ODE model which is trained to transport invertibly from $P$ to $Q$ (and vice versa) from empirical samples and is regularized by minimizing the transport cost. The trained flow model allows us to perform infinitesimal DRE along the time-parametrized $\log$-density by training an additional continuous-time flow network using classification loss, which estimates the time-partial derivative of the $\log$-density. Integrating the time-score network along time provides a telescopic DRE between $P$ and $Q$ that is more stable than a one-step DRE. The effectiveness of the proposed model is empirically demonstrated on mutual information estimation from high-dimensional data and energy-based generative models of image data.
The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels -- Mat\'ern and squared exponential -- in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Mat\'ern case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.
Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal $w_0\in\mathbb{R}^N$ from a random linear measurement $y= Xw_0 + \epsilon\in\mathbb{R}^M$, where $X\in\mathbb{R}^{M\times N}$ is a known measurement matrix and $\epsilon$ is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator $\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)$, which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting $M, N\to\infty, M/N\to\alpha\in(0,\infty)$. The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when $w_0$ is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.
A growing line of work shows how learned predictions can be used to break through worst-case barriers to improve the running time of an algorithm. However, incorporating predictions into data structures with strong theoretical guarantees remains underdeveloped. This paper takes a step in this direction by showing that predictions can be leveraged in the fundamental online list labeling problem. In the problem, n items arrive over time and must be stored in sorted order in an array of size Theta(n). The array slot of an element is its label and the goal is to maintain sorted order while minimizing the total number of elements moved (i.e., relabeled). We design a new list labeling data structure and bound its performance in two models. In the worst-case learning-augmented model, we give guarantees in terms of the error in the predictions. Our data structure provides strong guarantees: it is optimal for any prediction error and guarantees the best-known worst-case bound even when the predictions are entirely erroneous. We also consider a stochastic error model and bound the performance in terms of the expectation and variance of the error. Finally, the theoretical results are demonstrated empirically. In particular, we show that our data structure has strong performance on real temporal data sets where predictions are constructed from elements that arrived in the past, as is typically done in a practical use case.
In this paper, we propose the Ordered Median Tree Location Problem (OMT). The OMT is a single-allocation facility location problem where p facilities must be placed on a network connected by a non-directed tree. The objective is to minimize the sum of the ordered weighted averaged allocation costs plus the sum of the costs of connecting the facilities in the tree. We present different MILP formulations for the OMT based on properties of the minimum spanning tree problem and the ordered median optimization. Given that ordered median hub location problems are rather difficult to solve we have improved the OMT solution performance by introducing covering variables in a valid reformulation plus developing two pre-processing phases to reduce the size of this formulations. In addition, we propose a Benders decomposition algorithm to approach the OMT. We establish an empirical comparison between these new formulations and we also provide enhancements that together with a proper formulation allow to solve medium size instances on general random graphs.