Intrusion research frequently collects data on attack techniques currently employed and their potential symptoms. This includes deploying honeypots, logging events from existing devices, employing a red team for a sample attack campaign, or simulating system activity. However, these observational studies do not clearly discern the cause-and-effect relationships between the design of the environment and the data recorded. Neglecting such relationships increases the chance of drawing biased conclusions due to unconsidered factors, such as spurious correlations between features and errors in measurement or classification. In this paper, we present the theory and empirical data on methods that aim to discover such causal relationships efficiently. Our adaptive design (AD) is inspired by the clinical trial community: a variant of a randomized control trial (RCT) to measure how a particular ``treatment'' affects a population. To contrast our method with observational studies and RCT, we run the first controlled and adaptive honeypot deployment study, identifying the causal relationship between an ssh vulnerability and the rate of server exploitation. We demonstrate that our AD method decreases the total time needed to run the deployment by at least 33%, while still confidently stating the impact of our change in the environment. Compared to an analogous honeypot study with a control group, our AD requests 17% fewer honeypots while collecting 19% more attack recordings than an analogous honeypot study with a control group.
Large Language Models (LLMs) have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute function calls, using user-provided functions to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has expanded LLMs' scope to include multi-function calling, where LLMs are equipped with a variety of functions and select the proper functions based on the context. Multi-function calling abilities of LLMs have catalyzed LLM-based software development, allowing them to tackle more complex problems. However, current methods for multi-function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multi-function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution strategies and dependencies; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically computes an optimized orchestration for the function calls and can be used with open-source models such as LLaMA-2. We have benchmarked LLMCompiler on a range of tasks including cases with non-trivial inter-dependency between function calls, as well as cases that require dynamic replanning based on intermediate results. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% as compared to ReAct. Additionally, LLMCompiler achieves up to 1.35x latency gain over OpenAI's recent parallel function calling, while achieving similar accuracy.
We present a new approach for estimating parameters in rational ODE models from given (measured) time series data. In a typical existing approach, one first tries to make a good initial guess for the parameter values. Then, in a loop, the corresponding outputs are computed by solving the ODE numerically, followed by computing the error from the given time series data. If the error is small, the loop terminates and the parameter values are returned. Otherwise, heuristics/theories are used to possibly improve the guess and continue the loop. A downside of this approach is non-robustness, as there are no guarantees for the result of the loop iterations to be predictably close to the true parameter values. In this paper, we propose a new approach, which does not suffer from the above non-robustness. In particular, it does not require making good initial guesses for the parameter values. Instead, it uses differential algebra, interpolation of the data using rational functions, and multivariate polynomial system solving, and has a potential for a complete user control over the error of the estimation (the actual error analysis is left for the future research). We also compare the performance of the resulting software with several other estimation software packages.
Weather forecasting requires not only accuracy but also the ability to perform probabilistic prediction. However, deterministic weather forecasting methods do not support probabilistic predictions, and conversely, probabilistic models tend to be less accurate. To address these challenges, in this paper, we introduce the \textbf{\textit{D}}eterministic \textbf{\textit{G}}uidance \textbf{\textit{D}}iffusion \textbf{\textit{M}}odel (DGDM) for probabilistic weather forecasting, integrating benefits of both deterministic and probabilistic approaches. During the forward process, both the deterministic and probabilistic models are trained end-to-end. In the reverse process, weather forecasting leverages the predicted result from the deterministic model, using as an intermediate starting point for the probabilistic model. By fusing deterministic models with probabilistic models in this manner, DGDM is capable of providing accurate forecasts while also offering probabilistic predictions. To evaluate DGDM, we assess it on the global weather forecasting dataset (WeatherBench) and the common video frame prediction benchmark (Moving MNIST). We also introduce and evaluate the Pacific Northwest Windstorm (PNW)-Typhoon weather satellite dataset to verify the effectiveness of DGDM in high-resolution regional forecasting. As a result of our experiments, DGDM achieves state-of-the-art results not only in global forecasting but also in regional forecasting. The code is available at: \url{//github.com/DongGeun-Yoon/DGDM}.
Despite considerable progress in neural relevance ranking techniques, search engines still struggle to process complex queries effectively - both in terms of precision and recall. Sparse and dense Pseudo-Relevance Feedback (PRF) approaches have the potential to overcome limitations in recall, but are only effective with high precision in the top ranks. In this work, we tackle the problem of search over complex queries using three complementary techniques. First, we demonstrate that applying a strong neural re-ranker before sparse or dense PRF can improve the retrieval effectiveness by 5-8%. This improvement in PRF effectiveness can be attributed directly to improving the precision of the feedback set. Second, we propose an enhanced expansion model, Latent Entity Expansion (LEE), which applies fine-grained word and entity-based relevance modelling incorporating localized features. Specifically, we find that by including both words and entities for expansion achieve a further 2-8% improvement in NDCG. Our analysis also demonstrated that LEE is largely robust to its parameters across datasets and performs well on entity-centric queries. And third, we include an 'adaptive' component in the retrieval process, which iteratively refines the re-ranking pool during scoring using the expansion model and avoids re-ranking additional documents. We find that this combination of techniques achieves the best NDCG, MAP and R@1000 results on the TREC Robust 2004 and CODEC document datasets, demonstrating a significant advancement in expansion effectiveness.
Recently introduced cone distribution functions from statistics are turned into multi-criteria decision making (MCDM) tools. It is demonstrated that this procedure can be considered as an upgrade of the weighted sum scalarization insofar as it absorbs a whole collection of weighted sum scalarizations at once instead of fixing a particular one in advance. Moreover, situations are characterized in which different types of rank reversal occur, and it is explained why this might even be useful for analyzing the ranking procedure. A few examples will be discussed and a potential application in machine learning is outlined.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.