亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of multi-agent coordination in unpredictable and partially observable environments, that is, environments whose future evolution is unknown a priori and that can only be partially observed. We are motivated by the future of autonomy that involves multiple robots coordinating actions in dynamic, unstructured, and partially observable environments to complete complex tasks such as target tracking, environmental mapping, and area monitoring. Such tasks are often modeled as submodular maximization coordination problems due to the information overlap among the robots. We introduce the first submodular coordination algorithm with bandit feedback and bounded tracking regret -- bandit feedback is the robots' ability to compute in hindsight only the effect of their chosen actions, instead of all the alternative actions that they could have chosen instead, due to the partial observability; and tracking regret is the algorithm's suboptimality with respect to the optimal time-varying actions that fully know the future a priori. The bound gracefully degrades with the environments' capacity to change adversarially, quantifying how often the robots should re-select actions to learn to coordinate as if they fully knew the future a priori. The algorithm generalizes the seminal Sequential Greedy algorithm by Fisher et al. to the bandit setting, by leveraging submodularity and algorithms for the problem of tracking the best action. We validate our algorithm in simulated scenarios of multi-target tracking.

相關內容

Active Simultaneous Localisation and Mapping (SLAM) is a critical problem in autonomous robotics, enabling robots to navigate to new regions while building an accurate model of their surroundings. Visual SLAM is a popular technique that uses virtual elements to enhance the experience. However, existing frontier-based exploration strategies can lead to a non-optimal path in scenarios where there are multiple frontiers with similar distance. This issue can impact the efficiency and accuracy of Visual SLAM, which is crucial for a wide range of robotic applications, such as search and rescue, exploration, and mapping. To address this issue, this research combines both an existing Visual-Graph SLAM known as ExploreORB with reinforcement learning. The proposed algorithm allows the robot to learn and optimize exploration routes through a reward-based system to create an accurate map of the environment with proper frontier selection. Frontier-based exploration is used to detect unexplored areas, while reinforcement learning optimizes the robot's movement by assigning rewards for optimal frontier points. Graph SLAM is then used to integrate the robot's sensory data and build an accurate map of the environment. The proposed algorithm aims to improve the efficiency and accuracy of ExploreORB by optimizing the exploration process of frontiers to build a more accurate map. To evaluate the effectiveness of the proposed approach, experiments will be conducted in various virtual environments using Gazebo, a robot simulation software. Results of these experiments will be compared with existing methods to demonstrate the potential of the proposed approach as an optimal solution for SLAM in autonomous robotics.

A robot deployed in a home over long stretches of time faces a true lifelong learning problem. As it seeks to provide assistance to its users, the robot should leverage any accumulated experience to improve its own knowledge to become a more proficient assistant. We formalize this setting with a novel lifelong learning problem formulation in the context of learning for task and motion planning (TAMP). Exploiting the modularity of TAMP systems, we develop a generative mixture model that produces candidate continuous parameters for a planner. Whereas most existing lifelong learning approaches determine a priori how data is shared across task models, our approach learns shared and non-shared models and determines which to use online during planning based on auxiliary tasks that serve as a proxy for each model's understanding of a state. Our method exhibits substantial improvements in planning success on simulated 2D domains and on several problems from the BEHAVIOR benchmark.

Heading towards navigational autonomy in unmanned surface vehicles (USVs) in the maritime sector can fundamentally lead towards safer waters as well as reduced operating costs, while also providing a range of exciting new capabilities for oceanic research, exploration and monitoring. However, achieving such a goal is challenging. USV control systems must, safely and reliably, be able to adhere to the international regulations for preventing collisions at sea (COLREGs) in encounters with other vessels as they navigate to a given waypoint while being affected by realistic weather conditions, either during the day or at night. To deal with the multitude of possible scenarios, it is critical to have a virtual environment that is able to replicate the realistic operating conditions USVs will encounter, before they can be implemented in the real world. Such "digital twins" form the foundations upon which Deep Reinforcement Learning (DRL) and Computer Vision (CV) algorithms can be used to develop and guide USV control systems. In this paper we describe the novel development of a COLREG-compliant DRL-based collision avoidant navigational system with CV-based awareness in a realistic ocean simulation environment. The performance of the trained autonomous Agents resulting from this approach is evaluated in several successful navigations to set waypoints in both open sea and coastal encounters with other vessels. A binary executable version of the simulator with trained agents is available at //github.com/aavek/Aeolus-Ocean

Robots operating in real-world environments must reason about possible outcomes of stochastic actions and make decisions based on partial observations of the true world state. A major challenge for making accurate and robust action predictions is the problem of confounding, which if left untreated can lead to prediction errors. The partially observable Markov decision process (POMDP) is a widely-used framework to model these stochastic and partially-observable decision-making problems. However, due to a lack of explicit causal semantics, POMDP planning methods are prone to confounding bias and thus in the presence of unobserved confounders may produce underperforming policies. This paper presents a novel causally-informed extension of "anytime regularized determinized sparse partially observable tree" (AR-DESPOT), a modern anytime online POMDP planner, using causal modelling and inference to eliminate errors caused by unmeasured confounder variables. We further propose a method to learn offline the partial parameterisation of the causal model for planning, from ground truth model data. We evaluate our methods on a toy problem with an unobserved confounder and show that the learned causal model is highly accurate, while our planning method is more robust to confounding and produces overall higher performing policies than AR-DESPOT.

Stringent line-of-sight demands necessitated by the fast attenuating nature of millimeter waves (mmWaves) through obstacles pose one of the central problems of next generation wireless networks. These mmWave links are easily disrupted due to obstacles, including vehicles and pedestrians, which cause degradation in link quality and even link failure. Dynamic obstacles are usually tracked by dedicated tracking hardware like RGB-D cameras, which usually have small ranges, and hence lead to prohibitively increased deployment costs to achieve complete coverage of the deployment area. In this manuscript, we propose an altogether different approach to track multiple dynamic obstacles in an mmWave network, solely based on short-term historical link failure information, without resorting to any dedicated tracking hardware. After proving that the said problem is NP-complete, we employ a greedy set-cover based approach to solve it. Using the obtained trajectories, we perform proactive handoffs for at-risk links. We compare our approach with an RGB-D camera-based approach and show that our approach provides better tracking and handoff performances when the camera coverage is low to moderate, which is often the case in real deployment scenarios.

This paper investigates the planning and control problems for multi-robot systems under linear temporal logic (LTL) specifications. In contrast to most of existing literature, which presumes a static and known environment, our study focuses on dynamic environments that can have unknown moving obstacles like humans walking through. Depending on whether local communication is allowed between robots, we consider two different online re-planning approaches. When local communication is allowed, we propose a local trajectory generation algorithm for each robot to resolve conflicts that are detected on-line. In the other case, i.e., no communication is allowed, we develop a model predictive controller to reactively avoid potential collisions. In both cases, task satisfaction is guaranteed whenever it is feasible. In addition, we consider the human-in-the-loop scenario where humans may additionally take control of one or multiple robots. We design a mixed initiative controller for each robot to prevent unsafe human behaviors while guarantee the LTL satisfaction. Using our previous developed ROS software package, several experiments are conducted to demonstrate the effectiveness and the applicability of the proposed strategies.

This paper explores human behavior in virtual networked communities, specifically individuals or groups' potential and expressive capacity to respond to internal and external stimuli, with assortative matching as a typical example. A modeling approach based on Multi-Agent Reinforcement Learning (MARL) is proposed, adding a multi-head attention function to the A3C algorithm to enhance learning effectiveness. This approach simulates human behavior in certain scenarios through various environmental parameter settings and agent action strategies. In our experiment, reinforcement learning is employed to serve specific agents that learn from environment status and competitor behaviors, optimizing strategies to achieve better results. The simulation includes individual and group levels, displaying possible paths to forming competitive advantages. This modeling approach provides a means for further analysis of the evolutionary dynamics of human behavior, communities, and organizations in various socioeconomic issues.

Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When this is the case, the policy needs to leverage the history of observations to infer the current state. At the same time, differences between the training and testing environments makes it critical for the policy not to overfit to the sequence of observations it sees at training time. As such, there is an important balancing act between having the history encoder be flexible enough to extract relevant information, yet be robust to changes in the environment. To strike this balance, we look to the PID controller for inspiration. We assert the PID controller's success shows that only summing and differencing are needed to accumulate information over time for many control tasks. Following this principle, we propose two architectures for encoding history: one that directly uses PID features and another that extends these core ideas and can be used in arbitrary control tasks. When compared with prior approaches, our encoders produce policies that are often more robust and achieve better performance on a variety of tracking tasks. Going beyond tracking tasks, our policies achieve 1.7x better performance on average over previous state-of-the-art methods on a suite of high dimensional control tasks.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.

北京阿比特科技有限公司