Heading towards navigational autonomy in unmanned surface vehicles (USVs) in the maritime sector can fundamentally lead towards safer waters as well as reduced operating costs, while also providing a range of exciting new capabilities for oceanic research, exploration and monitoring. However, achieving such a goal is challenging. USV control systems must, safely and reliably, be able to adhere to the international regulations for preventing collisions at sea (COLREGs) in encounters with other vessels as they navigate to a given waypoint while being affected by realistic weather conditions, either during the day or at night. To deal with the multitude of possible scenarios, it is critical to have a virtual environment that is able to replicate the realistic operating conditions USVs will encounter, before they can be implemented in the real world. Such "digital twins" form the foundations upon which Deep Reinforcement Learning (DRL) and Computer Vision (CV) algorithms can be used to develop and guide USV control systems. In this paper we describe the novel development of a COLREG-compliant DRL-based collision avoidant navigational system with CV-based awareness in a realistic ocean simulation environment. The performance of the trained autonomous Agents resulting from this approach is evaluated in several successful navigations to set waypoints in both open sea and coastal encounters with other vessels. A binary executable version of the simulator with trained agents is available at //github.com/aavek/Aeolus-Ocean
Modern neural recording techniques allow neuroscientists to obtain spiking activity from many hundreds of neurons simultaneously over long time periods, and new statistical methods are needed to understand structure of the large-scale data, in terms of both neuron numbers and recording duration. Here, we develop a bi-clustering method to cluster the neural spiking activity both spatially and temporally, according to their low-dimensional latent structures. The spatial (neuron) clusters are defined by the latent trajectories within each neural population, while the temporal (state) clusters are defined by local linear dynamics manner across the population. To flexibly extracting the bi-clustering structure, we build the model non-parametrically, and develop an efficient Markov chain Monte Carlo (MCMC) algorithm to sample the posterior distributions of model parameters. Validating our proposed MCMC algorithm through simulations, we find the method can recover unknown parameters and true bi-clustering structures successfully. We then apply the proposed bi-clustering method for counting series to multi-regional neural recordings under different experiment settings, where we find that simultaneously considering latent trajectories and spatial-temporal clustering structures can provide us with a more accurate and interpretable results. Overall, the proposed method provides scientific insights for large-scale (counting) time series with elongated recording periods, and it can have application beyond neuroscience.
As the fusion of automotive industry and metaverse, vehicular metaverses establish a bridge between the physical space and virtual space, providing intelligent transportation services through the integration of various technologies, such as extended reality and real-time rendering technologies, to offer immersive metaverse services for Vehicular Metaverse Users (VMUs). In vehicular metaverses, VMUs update vehicle twins (VTs) deployed in RoadSide Units (RSUs) to obtain metaverse services. However, due to the mobility of vehicles and the limited service coverage of RSUs, VT migration is necessary to ensure continuous immersive experiences for VMUs. This process requires RSUs to contribute resources for enabling efficient migration, which leads to a resource trading problem between RSUs and VMUs. Moreover, a single RSU cannot support large-scale VT migration. To this end, we propose a blockchain-assisted game approach framework for reliable VT migration in vehicular metaverses. Based on the subject logic model, we first calculate the reputation values of RSUs considering the freshness of interaction between RSUs and VMUs. Then, a coalition game based on the reputation values of RSUs is formulated, and RSU coalitions are formed to jointly provide bandwidth resources for reliable and large-scale VT migration. Subsequently, the RSU coalition with the highest utility is selected. Finally, to incentivize VMUs to participate in VT migration, we propose a Stackelberg model between the selected coalition and VMUs. Numerical results demonstrate the reliability and effectiveness of the proposed schemes.
Benefiting from the development of deep learning, text-to-speech (TTS) techniques using clean speech have achieved significant performance improvements. The data collected from real scenes often contains noise and generally needs to be denoised by speech enhancement models. Noise-robust TTS models are often trained using the enhanced speech, which thus suffer from speech distortion and background noise that affect the quality of the synthesized speech. Meanwhile, it was shown that self-supervised pre-trained models exhibit excellent noise robustness on many speech tasks, implying that the learned representation has a better tolerance for noise perturbations. In this work, we therefore explore pre-trained models to improve the noise robustness of TTS models. Based on HiFi-GAN, we first propose a representation-to-waveform vocoder, which aims to learn to map the representation of pre-trained models to the waveform. We then propose a text-to-representation FastSpeech2 model, which aims to learn to map text to pre-trained model representations. Experimental results on the LJSpeech and LibriTTS datasets show that our method outperforms those using speech enhancement methods in both subjective and objective metrics. Audio samples are available at: //zqs01.github.io/rep2wav.
Soft object manipulation tasks in domestic scenes pose a significant challenge for existing robotic skill learning techniques due to their complex dynamics and variable shape characteristics. Since learning new manipulation skills from human demonstration is an effective way for robot applications, developing prior knowledge of the representation and dynamics of soft objects is necessary. In this regard, we propose a pre-trained soft object manipulation skill learning model, namely SoftGPT, that is trained using large amounts of exploration data, consisting of a three-dimensional heterogeneous graph representation and a GPT-based dynamics model. For each downstream task, a goal-oriented policy agent is trained to predict the subsequent actions, and SoftGPT generates the consequences of these actions. Integrating these two approaches establishes a thinking process in the robot's mind that provides rollout for facilitating policy learning. Our results demonstrate that leveraging prior knowledge through this thinking process can efficiently learn various soft object manipulation skills, with the potential for direct learning from human demonstrations.
We propose a new Nitsche-type approach for weak enforcement of normal velocity boundary conditions for a Lagrangian discretization of the compressible shock-hydrodynamics equations using high-order finite elements on curved boundaries. Specifically, the variational formulation is appropriately modified to enforce free-slip wall boundary conditions, without perturbing the structure of the function spaces used to represent the solution, with a considerable simplification with respect to traditional approaches. Total energy is conserved and the resulting mass matrices are constant in time. The robustness and accuracy of the proposed method are validated with an extensive set of tests involving nontrivial curved boundaries.
Developing reliable autonomous driving algorithms poses challenges in testing, particularly when it comes to safety-critical traffic scenarios involving pedestrians. An open question is how to simulate rare events, not necessarily found in autonomous driving datasets or scripted simulations, but which can occur in testing, and, in the end may lead to severe pedestrian related accidents. This paper presents a method for designing a suicidal pedestrian agent within the CARLA simulator, enabling the automatic generation of traffic scenarios for testing safety of autonomous vehicles (AVs) in dangerous situations with pedestrians. The pedestrian is modeled as a reinforcement learning (RL) agent with two custom reward functions that allow the agent to either arbitrarily or with high velocity to collide with the AV. Instead of significantly constraining the initial locations and the pedestrian behavior, we allow the pedestrian and autonomous car to be placed anywhere in the environment and the pedestrian to roam freely to generate diverse scenarios. To assess the performance of the suicidal pedestrian and the target vehicle during testing, we propose three collision-oriented evaluation metrics. Experimental results involving two state-of-the-art autonomous driving algorithms trained end-to-end with imitation learning from sensor data demonstrate the effectiveness of the suicidal pedestrian in identifying decision errors made by autonomous vehicles controlled by the algorithms.
Vectorized high-definition map online construction has garnered considerable attention in the field of autonomous driving research. Most existing approaches model changeable map elements using a fixed number of points, or predict local maps in a two-stage autoregressive manner, which may miss essential details and lead to error accumulation. Towards precise map element learning, we propose a simple yet effective architecture named PivotNet, which adopts unified pivot-based map representations and is formulated as a direct set prediction paradigm. Concretely, we first propose a novel point-to-line mask module to encode both the subordinate and geometrical point-line priors in the network. Then, a well-designed pivot dynamic matching module is proposed to model the topology in dynamic point sequences by introducing the concept of sequence matching. Furthermore, to supervise the position and topology of the vectorized point predictions, we propose a dynamic vectorized sequence loss. Extensive experiments and ablations show that PivotNet is remarkably superior to other SOTAs by 5.9 mAP at least. The code will be available soon.
Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.