亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing bounds on the generalization error of deep networks assume some form of smooth or bounded dependence on the input variable, falling short of investigating the mechanisms controlling such factors in practice. In this work, we present an extensive experimental study of the empirical Lipschitz constant of deep networks undergoing double descent, and highlight non-monotonic trends strongly correlating with the test error. Building a connection between parameter-space and input-space gradients for SGD around a critical point, we isolate two important factors -- namely loss landscape curvature and distance of parameters from initialization -- respectively controlling optimization dynamics around a critical point and bounding model function complexity, even beyond the training data. Our study presents novels insights on implicit regularization via overparameterization, and effective model complexity for networks trained in practice.

相關內容

The characteristics of data like distribution and heterogeneity, become more complex and counterintuitive as the dimensionality increases. This phenomenon is known as curse of dimensionality, where common patterns and relationships (e.g., internal and boundary pattern) that hold in low-dimensional space may be invalid in higher-dimensional space. It leads to a decreasing performance for the regression, classification or clustering models or algorithms. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

Large-scale discrete fracture network (DFN) simulators are standard fare for studies involving the sub-surface transport of particles since direct observation of real world underground fracture networks is generally infeasible. While these simulators have seen numerous successes over several engineering applications, estimations on quantities of interest (QoI) - such as breakthrough time of particles reaching the edge of the system - suffer from a two distinct types of uncertainty. A run of a DFN simulator requires several parameter values to be set that dictate the placement and size of fractures, the density of fractures, and the overall permeability of the system; uncertainty on the proper parameter choices will lead to some amount of uncertainty in the QoI, called epistemic uncertainty. Furthermore, since DFN simulators rely on stochastic processes to place fractures and govern flow, understanding how this randomness affects the QoI requires several runs of the simulator at distinct random seeds. The uncertainty in the QoI attributed to different realizations (i.e. different seeds) of the same random process leads to a second type of uncertainty, called aleatoric uncertainty. In this paper, we perform a Sensitivity Analysis, which directly attributes the uncertainty observed in the QoI to the epistemic uncertainty from each input parameter and to the aleatoric uncertainty. We make several design choices to handle an observed heteroskedasticity in DFN simulators, where the aleatoric uncertainty changes for different inputs, since the quality makes several standard statistical methods inadmissible. Beyond the specific takeaways on which input variables affect uncertainty the most for DFN simulators, a major contribution of this paper is the introduction of a statistically rigorous workflow for characterizing the uncertainty in DFN flow simulations that exhibit heteroskedasticity.

Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.

Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. % , or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.

When implementing hierarchical federated learning over wireless networks, scalability assurance and the ability to handle both interference and device data heterogeneity are crucial. This work introduces a learning method designed to address these challenges, along with a scalable transmission scheme that efficiently uses a single wireless resource through over-the-air computation. To provide resistance against data heterogeneity, we employ gradient aggregations. Meanwhile, the impact of interference is minimized through optimized receiver normalizing factors. For this, we model a multi-cluster wireless network using stochastic geometry, and characterize the mean squared error of the aggregation estimations as a function of the network parameters. We show that despite the interference and the data heterogeneity, the proposed scheme achieves high learning accuracy and can significantly outperform the conventional hierarchical algorithm.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司