亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Argentinian real estate market presents a unique case study characterized by its unstable and rapidly shifting macroeconomic circumstances over the past decades. Despite the existence of a few datasets for price prediction, there is a lack of mixed modality datasets specifically focused on Argentina. In this paper, the first edition of ARED is introduced. A comprehensive real estate price prediction dataset series, designed for the Argentinian market. This edition contains information solely for Jan-Feb 2024. It was found that despite the short time range captured by this zeroth edition (44 days), time dependent phenomena has been occurring mostly on a market level (market as a whole). Nevertheless future editions of this dataset, will most likely contain historical data. Each listing in ARED comprises descriptive features, and variable-length sets of images.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Since its inception, Rowhammer exploits have rapidly evolved into increasingly sophisticated threats not only compromising data integrity but also the control flow integrity of victim processes. Nevertheless, it remains a challenge for an attacker to identify vulnerable targets (i.e., Rowhammer gadgets), understand the outcome of the attempted fault, and formulate an attack that yields useful results. In this paper, we present a new type of Rowhammer gadget, called a LeapFrog gadget, which, when present in the victim code, allows an adversary to subvert code execution to bypass a critical piece of code (e.g., authentication check logic, encryption rounds, padding in security protocols). The Leapfrog gadget manifests when the victim code stores the Program Counter (PC) value in the user or kernel stack (e.g., a return address during a function call) which, when tampered with, re-positions the return address to a location that bypasses a security-critical code pattern. This research also presents a systematic process to identify Leapfrog gadgets. This methodology enables the automated detection of susceptible targets and the determination of optimal attack parameters. We first showcase this new attack vector through a practical demonstration on a TLS handshake client/server scenario, successfully inducing an instruction skip in a client application. We then demonstrate the attack on real-world code found in the wild, implementing an attack on OpenSSL. Our findings extend the impact of Rowhammer attacks on control flow and contribute to the development of more robust defenses against these increasingly sophisticated threats.

Domain generalization~(DG) aims at solving distribution shift problems in various scenes. Existing approaches are based on Convolution Neural Networks (CNNs) or Vision Transformers (ViTs), which suffer from limited receptive fields or quadratic complexities issues. Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields. Despite this, it can hardly be applied to DG to address distribution shifts, due to the hidden state issues and inappropriate scan mechanisms. In this paper, we propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains and meanwhile has the advantages of global receptive fields, and efficient linear complexity. Our DGMamba compromises two core components: Hidden State Suppressing~(HSS) and Semantic-aware Patch refining~(SPR). In particular, HSS is introduced to mitigate the influence of hidden states associated with domain-specific features during output prediction. SPR strives to encourage the model to concentrate more on objects rather than context, consisting of two designs: Prior-Free Scanning~(PFS), and Domain Context Interchange~(DCI). Concretely, PFS aims to shuffle the non-semantic patches within images, creating more flexible and effective sequences from images, and DCI is designed to regularize Mamba with the combination of mismatched non-semantic and semantic information by fusing patches among domains. Extensive experiments on four commonly used DG benchmarks demonstrate that the proposed DGMamba achieves remarkably superior results to state-of-the-art models. The code will be made publicly available.

Leveraging vast training data, multimodal large language models (MLLMs) have demonstrated formidable general visual comprehension capabilities and achieved remarkable performance across various tasks. However, their performance in visual document understanding still leaves much room for improvement. This discrepancy is primarily attributed to the fact that visual document understanding is a fine-grained prediction task. In natural scenes, MLLMs typically use low-resolution images, leading to a substantial loss of visual information. Furthermore, general-purpose MLLMs do not excel in handling document-oriented instructions. In this paper, we propose a High-Resolution Visual Document Assistant (HRVDA), which bridges the gap between MLLMs and visual document understanding. This model employs a content filtering mechanism and an instruction filtering module to separately filter out the content-agnostic visual tokens and instruction-agnostic visual tokens, thereby achieving efficient model training and inference for high-resolution images. In addition, we construct a document-oriented visual instruction tuning dataset and apply a multi-stage training strategy to enhance the model's document modeling capabilities. Extensive experiments demonstrate that our model achieves state-of-the-art performance across multiple document understanding datasets, while maintaining training efficiency and inference speed comparable to low-resolution models.

Semi-structured tables are ubiquitous. There has been a variety of tasks that aim to automatically interpret, augment, and query tables. Current methods often require pretraining on tables or special model architecture design, are restricted to specific table types, or have simplifying assumptions about tables and tasks. This paper makes the first step towards developing open-source large language models (LLMs) as generalists for a diversity of table-based tasks. Towards that end, we construct TableInstruct, a new dataset with a variety of realistic tables and tasks, for instruction tuning and evaluating LLMs. We further develop the first open-source generalist model for tables, TableLlama, by fine-tuning Llama 2 (7B) with LongLoRA to address the long context challenge. We experiment under both in-domain setting and out-of-domain setting. On 7 out of 8 in-domain tasks, TableLlama achieves comparable or better performance than the SOTA for each task, despite the latter often has task-specific design. On 6 out-of-domain datasets, it achieves 5-44 absolute point gains compared with the base model, showing that training on TableInstruct enhances the model's generalizability. We open-source our dataset and trained model to boost future work on developing open generalist models for tables.

In situ approaches can accelerate the pace of scientific discoveries by allowing scientists to perform data analysis at simulation time. Current in situ workflow systems, however, face challenges in handling the growing complexity and diverse computational requirements of scientific tasks. In this work, we present Wilkins, an in situ workflow system that is designed for ease-of-use while providing scalable and efficient execution of workflow tasks. Wilkins provides a flexible workflow description interface, employs a high-performance data transport layer based on HDF5, and supports tasks with disparate data rates by providing a flow control mechanism. Wilkins seamlessly couples scientific tasks that already use HDF5, without requiring task code modifications. We demonstrate the above features using both synthetic benchmarks and two science use cases in materials science and cosmology.

We present GenN2N, a unified NeRF-to-NeRF translation framework for various NeRF translation tasks such as text-driven NeRF editing, colorization, super-resolution, inpainting, etc. Unlike previous methods designed for individual translation tasks with task-specific schemes, GenN2N achieves all these NeRF editing tasks by employing a plug-and-play image-to-image translator to perform editing in the 2D domain and lifting 2D edits into the 3D NeRF space. Since the 3D consistency of 2D edits may not be assured, we propose to model the distribution of the underlying 3D edits through a generative model that can cover all possible edited NeRFs. To model the distribution of 3D edited NeRFs from 2D edited images, we carefully design a VAE-GAN that encodes images while decoding NeRFs. The latent space is trained to align with a Gaussian distribution and the NeRFs are supervised through an adversarial loss on its renderings. To ensure the latent code does not depend on 2D viewpoints but truly reflects the 3D edits, we also regularize the latent code through a contrastive learning scheme. Extensive experiments on various editing tasks show GenN2N, as a universal framework, performs as well or better than task-specific specialists while possessing flexible generative power. More results on our project page: //xiangyueliu.github.io/GenN2N/

With the advent of the era of big data, massive information, expert experience, and high-accuracy models bring great opportunities to the information cascade prediction of public emergencies. However, the involvement of specialist knowledge from various disciplines has resulted in a primarily application-specific focus (e.g., earthquakes, floods, infectious diseases) for information cascade prediction of public emergencies. The lack of a unified prediction framework poses a challenge for classifying intersectional prediction methods across different application fields. This survey paper offers a systematic classification and summary of information cascade modeling, prediction, and application. We aim to help researchers identify cutting-edge research and comprehend models and methods of information cascade prediction under public emergencies. By summarizing open issues and outlining future directions in this field, this paper has the potential to be a valuable resource for researchers conducting further studies on predicting information cascades.

Within recent times, cybercriminals have curated a variety of organised and resolute cyber attacks within a range of cyber systems, leading to consequential ramifications to private and governmental institutions. Current security-based automation and orchestrations focus on automating fixed purpose and hard-coded solutions, which are easily surpassed by modern-day cyber attacks. Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents. This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms. The requirement analysis allows the comparison of automated agents and highlights the importance of ACO Gyms for their continual development. The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems. Relevant future challenges were addressed from the overall analysis to accelerate development within the area of Automated Cyber Defence.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.

北京阿比特科技有限公司