In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainties alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other state-of-the-art methods, the proposed method achieves lower RMSEs, higher log-likelihood values and lower computational costs for the evaluated datasets.
This work explores the intersection of continual learning (CL) and differential privacy (DP). Crucially, continual learning models must retain knowledge across tasks, but this conflicts with the differential privacy requirement of restricting individual samples to be memorised in the model. We propose using pre-trained models to address the trade-offs between privacy and performance in a continual learning setting.More specifically, we present necessary assumptions to enable privacy-preservation and propose combining pre-trained models with parameter-free classifiers and parameter-efficient adapters that are learned under differential privacy. Our experiments demonstrate their effectiveness and provide insights into balancing the competing demands of continual learning and privacy.
Diffusion models (DMs) have recently shown outstanding capabilities in modeling complex image distributions, making them expressive image priors for solving Bayesian inverse problems. However, most existing DM-based methods rely on approximations in the generative process to be generic to different inverse problems, leading to inaccurate sample distributions that deviate from the target posterior defined within the Bayesian framework. To harness the generative power of DMs while avoiding such approximations, we propose a Markov chain Monte Carlo algorithm that performs posterior sampling for general inverse problems by reducing it to sampling the posterior of a Gaussian denoising problem. Crucially, we leverage a general DM formulation as a unified interface that allows for rigorously solving the denoising problem with a range of state-of-the-art DMs. We demonstrate the effectiveness of the proposed method on six inverse problems (three linear and three nonlinear), including a real-world black hole imaging problem. Experimental results indicate that our proposed method offers more accurate reconstructions and posterior estimation compared to existing DM-based imaging inverse methods.
Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. Code available at //github.com/yascho/probabilistic-unlearning.
In this study, we investigate if noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different state-of-the-art ASR architectures, where each of the ASR architectures is trained under three different augmentation conditions: one subject to background noise, speed variations, and reverberations, another subject to speed variations only, and a third without any form of data augmentation. The results demonstrate that noise augmentation not only improves model performance on noisy speech but also the model's robustness to adversarial attacks.
We show that the epidemiological Renormalization Group (eRG) framework is a useful and minimal tool to effectively describe the temporal evolution of the Dengue multi-wave pandemics. We test the framework on the Dengue history of several countries located in both Latin America and Asia. We also observe a strong correlation between the total number of infected individuals and the changes in the local temperature. Our results further support the expectation that global warming is bound to increase the cases of Dengue worldwide. We then move to investigate, via the eRG, the recent outbreak in Fano, Italy and offer our projections.
With a view on applications in computing, in particular concurrency theory and higher-dimensional rewriting, we develop notions of $n$-fold monoid and comonoid objects in $n$-fold monoidal categories and bicategories. We present a series of examples for these structures from various domains, including a categorical model for a communication protocol and a lax $n$-fold relational monoid, which has previously been used implicitly for higher-dimensional rewriting and which specialises in a natural way to strict $n$-categories. A special set of examples is built around modules and algebras of the boolean semiring, which allows us to deal with semilattices, additively idempotent semirings and quantales using tools from classical algebra.
This study aims to optimize the existing retrieval-augmented generation model (RAG) by introducing a graph structure to improve the performance of the model in dealing with complex knowledge reasoning tasks. The traditional RAG model has the problem of insufficient processing efficiency when facing complex graph structure information (such as knowledge graphs, hierarchical relationships, etc.), which affects the quality and consistency of the generated results. This study proposes a scheme to process graph structure data by combining graph neural network (GNN), so that the model can capture the complex relationship between entities, thereby improving the knowledge consistency and reasoning ability of the generated text. The experiment used the Natural Questions (NQ) dataset and compared it with multiple existing generation models. The results show that the graph-based RAG model proposed in this paper is superior to the traditional generation model in terms of quality, knowledge consistency, and reasoning ability, especially when dealing with tasks that require multi-dimensional reasoning. Through the combination of the enhancement of the retrieval module and the graph neural network, the model in this study can better handle complex knowledge background information and has broad potential value in multiple practical application scenarios.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.