We derive several sets of sufficient conditions for applicability of the new efficient numerical realization of the inverse $Z$-transform. For large $n$, the complexity of the new scheme is dozens of times smaller than the complexity of the trapezoid rule. As applications, pricing of European options and single barrier options with discrete monitoring are considered; applications to more general options with barrier-lookback features are outlined. In the case of sectorial transition operators, hence, for symmetric L\'evy models, the proof is straightforward. In the case of non-symmetric L\'evy models, we construct a non-linear deformation of the dual space, which makes the transition operator sectorial, with an arbitrary small opening angle, and justify the new realization. We impose mild conditions which are satisfied for wide classes of non-symmetric Stieltjes-L\'evy processes.
Natural language processing (NLP) made an impressive jump with the introduction of Transformers. ChatGPT is one of the most famous examples, changing the perception of the possibilities of AI even outside the research community. However, besides the impressive performance, the quadratic time and space complexity of Transformers with respect to sequence length pose significant limitations for handling long sequences. While efficient Transformer architectures like Linformer and Performer with linear complexity have emerged as promising solutions, their theoretical understanding remains limited. In this paper, we introduce Sumformer, a novel and simple architecture capable of universally approximating equivariant sequence-to-sequence functions. We use Sumformer to give the first universal approximation results for Linformer and Performer. Moreover, we derive a new proof for Transformers, showing that just one attention layer is sufficient for universal approximation.
We propose a new interpolation-based error decoding algorithm for $(n,k)$ Reed-Solomon (RS) codes over a finite field of size $q$, where $n=q-1$ is the length and $k$ is the dimension. In particular, we employ the fast Fourier transform (FFT) together with properties of a circulant matrix associated with the error interpolation polynomial and some known results from elimination theory in the decoding process. The asymptotic computational complexity of the proposed algorithm for correcting any $t \leq \lfloor \frac{n-k}{2} \rfloor$ errors in an $(n,k)$ RS code is of order $\mathcal{O}(t\log^2 t)$ and $\mathcal{O}(n\log^2 n \log\log n)$ over FFT-friendly and arbitrary finite fields, respectively, achieving the best currently known asymptotic decoding complexity, proposed for the same set of parameters.
The positive/negative definite matrices are strong in the multi-agent protocol in dictating the agents' final states as opposed to the semidefinite matrices. Previous sufficient conditions on the bipartite consensus of the matrix-weighted network are heavily based on the positive-negative spanning tree whereby the strong connections permeate the network. To establish sufficient conditions for the weakly connected matrix-weighted network where such a spanning tree does not exist, we first identify a basic unit in the graph that is naturally bipartite in structure and in convergence, referred to as a continent. We then derive sufficient conditions for when several of these units are connected through paths or edges that are endowed with semidefinite matricial weights. Lastly, we discuss how consensus and bipartite consensus, unsigned and signed matrix-weighted networks should be unified, thus generalizing the obtained results to the consensus study of the matrix-weighted networks.
In many recent works, multi-layer perceptions (MLPs) have been shown to be suitable for modeling complex spatially-varying functions including images and 3D scenes. Although the MLPs are able to represent complex scenes with unprecedented quality and memory footprint, this expressive power of the MLPs, however, comes at the cost of long training and inference times. On the other hand, bilinear/trilinear interpolation on regular grid based representations can give fast training and inference times, but cannot match the quality of MLPs without requiring significant additional memory. Hence, in this work, we investigate what is the smallest change to grid-based representations that allows for retaining the high fidelity result of MLPs while enabling fast reconstruction and rendering times. We introduce a surprisingly simple change that achieves this task -- simply allowing a fixed non-linearity (ReLU) on interpolated grid values. When combined with coarse to-fine optimization, we show that such an approach becomes competitive with the state-of-the-art. We report results on radiance fields, and occupancy fields, and compare against multiple existing alternatives. Code and data for the paper are available at //geometry.cs.ucl.ac.uk/projects/2022/relu_fields.
Let $G$ be an undirected graph, and $s,t$ distinguished vertices of $G$. A minimal $s,t$-separator is an inclusion-wise minimal vertex-set whose removal places $s$ and $t$ in distinct connected components. We present an algorithm for listing the minimal $s,t$-separators of a graph in non-decreasing order of cardinality, in polynomial-delay. This problem finds applications in various algorithms parameterized by treewidth, which include query evaluation in relational databases, probabilistic inference, and many more. In the process, we prove several results that are of independent interest. We establish a new island of tractability to the intensively studied 2-disjoint connected subgraphs problem, which is NP-complete even for restricted graph classes that include planar graphs, and prove new characterizations of minimal $s,t$-separators. Ours is the first to present a ranked enumeration algorithm for minimal separators where the delay is polynomial in the size of the input graph.
We prove a convergence theorem for U-statistics of degree two, where the data dimension $d$ is allowed to scale with sample size $n$. We find that the limiting distribution of a U-statistic undergoes a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and asymmetric distribution. Our bounds are valid for any finite $n$ and $d$, independent of individual eigenvalues of the underlying function, and dimension-independent under a mild assumption. As an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study. In a simple empirical setting, our results correctly predict how the test power at a fixed threshold scales with $d$ and the bandwidth.
This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
The volume function V(t) of a compact set S\in R^d is just the Lebesgue measure of the set of points within a distance to S not larger than t. According to some classical results in geometric measure theory, the volume function turns out to be a polynomial, at least in a finite interval, under a quite intuitive, easy to interpret, sufficient condition (called ``positive reach'') which can be seen as an extension of the notion of convexity. However, many other simple sets, not fulfilling the positive reach condition, have also a polynomial volume function. To our knowledge, there is no general, simple geometric description of such sets. Still, the polynomial character of $V(t)$ has some relevant consequences since the polynomial coefficients carry some useful geometric information. In particular, the constant term is the volume of S and the first order coefficient is the boundary measure (in Minkowski's sense). This paper is focused on sets whose volume function is polynomial on some interval starting at zero, whose length (that we call ``polynomial reach'') might be unknown. Our main goal is to approximate such polynomial reach by statistical means, using only a large enough random sample of points inside S. The practical motivation is simple: when the value of the polynomial reach , or rather a lower bound for it, is approximately known, the polynomial coefficients can be estimated from the sample points by using standard methods in polynomial approximation. As a result, we get a quite general method to estimate the volume and boundary measure of the set, relying only on an inner sample of points and not requiring the use any smoothing parameter. This paper explores the theoretical and practical aspects of this idea.
In this paper, we propose an efficient quadratic interpolation formula utilizing solution gradients computed and stored at nodes and demonstrate its application to a third-order cell-centered finite-volume discretization on tetrahedral grids. The proposed quadratic formula is constructed based on an efficient formula of computing a projected derivative. It is efficient in that it completely eliminates the need to compute and store second derivatives of solution variables or any other quantities, which are typically required in upgrading a second-order cell-centered unstructured-grid finite-volume discretization to third-order accuracy. Moreover, a high-order flux quadrature formula, as required for third-order accuracy, can also be simplified by utilizing the efficient projected-derivative formula, resulting in a numerical flux at a face centroid plus a curvature correction not involving second derivatives of the flux. Similarly, a source term can be integrated over a cell to high-order in the form of the source term evaluated at the cell centroid plus a curvature correction, again, not requiring second derivatives of the source term. The discretization is defined as an approximation to an integral form of a conservation law but the numerical solution is defined as a point value at a cell center, leading to another feature that there is no need to compute and store geometric moments for a quadratic polynomial to preserve a cell average. Third-order accuracy and improved second-order accuracy are demonstrated and investigated for simple but illustrative test cases in three dimensions.