亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Duan, Wu and Zhou (FOCS 2023) recently obtained the improved upper bound on the exponent of square matrix multiplication $\omega<2.3719$ by introducing a new approach to quantify and compensate the ``combination loss" in prior analyses of powers of the Coppersmith-Winograd tensor. In this paper we show how to use this new approach to improve the exponent of rectangular matrix multiplication as well. Our main technical contribution is showing how to combine this analysis of the combination loss and the analysis of the fourth power of the Coppersmith-Winograd tensor in the context of rectangular matrix multiplication developed by Le Gall and Urrutia (SODA 2018).

相關內容

Consider bivariate observations $(X_1,Y_1), \ldots, (X_n,Y_n) \in \mathbb{R}\times \mathbb{R}$ with unknown conditional distributions $Q_x$ of $Y$, given that $X = x$. The goal is to estimate these distributions under the sole assumption that $Q_x$ is isotonic in $x$ with respect to likelihood ratio order. If the observations are identically distributed, a related goal is to estimate the joint distribution $\mathcal{L}(X,Y)$ under the sole assumption that it is totally positive of order two in a certain sense. An algorithm is developed which estimates the unknown family of distributions $(Q_x)_x$ via empirical likelihood. The benefit of the stronger regularization imposed by likelihood ratio order over the usual stochastic order is evaluated in terms of estimation and predictive performances on simulated as well as real data.

Regularized m-estimators are widely used due to their ability of recovering a low-dimensional model in high-dimensional scenarios. Some recent efforts on this subject focused on creating a unified framework for establishing oracle bounds, and deriving conditions for support recovery. Under this same framework, we propose a new Generalized Information Criteria (GIC) that takes into consideration the sparsity pattern one wishes to recover. We obtain non-asymptotic model selection bounds and sufficient conditions for model selection consistency of the GIC. Furthermore, we show that the GIC can also be used for selecting the regularization parameter within a regularized $m$-estimation framework, which allows practical use of the GIC for model selection in high-dimensional scenarios. We provide examples of group LASSO in the context of generalized linear regression and low rank matrix regression.

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, randomization and cryptography were harnessed to achieve low-communication broadcast with sub-quadratic total communication and balanced sub-linear cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved. On the other hand, the only nontrivial $\omega(n)$ communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide new communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. 1) We demonstrate a tradeoff between resiliency and communication for protocols secure against $n-o(n)$ static corruptions. For example, $\Omega(n\cdot {\sf polylog}(n))$ messages are needed when the number of honest parties is $n/{\sf polylog}(n)$; $\Omega(n\sqrt{n})$ messages are needed for $O(\sqrt{n})$ honest parties; and $\Omega(n^2)$ messages are needed for $O(1)$ honest parties. Complementarily, we demonstrate broadcast with $O(n\cdot{\sf polylog}(n))$ total communication facing any constant fraction of static corruptions. 2) Our second bound considers $n/2 + k$ corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to $k$ other parties. This rules out, for example, broadcast facing 51% corruptions in which all non-sender parties have sublinear communication locality.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

Differentially private stochastic gradient descent (DP-SGD) is the workhorse algorithm for recent advances in private deep learning. It provides a single privacy guarantee to all datapoints in the dataset. We propose output-specific $(\varepsilon,\delta)$-DP to characterize privacy guarantees for individual examples when releasing models trained by DP-SGD. We also design an efficient algorithm to investigate individual privacy across a number of datasets. We find that most examples enjoy stronger privacy guarantees than the worst-case bound. We further discover that the training loss and the privacy parameter of an example are well-correlated. This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees. For example, on CIFAR-10, the average $\varepsilon$ of the class with the lowest test accuracy is 44.2\% higher than that of the class with the highest accuracy.

Many physical systems are governed by ordinary or partial differential equations (see, for example, Chapter ''Differential equations'', ''System of Differential Equations''). Typically the solution of such systems are functions of time or of a single space variable (in the case of ODE's), or they depend on multidimensional space coordinates or on space and time (in the case of PDE's). In some cases, the solutions may depend on several time or space scales. An example governed by ODE's is the damped harmonic oscillator, in the two extreme cases of very small or very large damping, the cardiovascular system, where the thickness of the arteries and veins varies from centimeters to microns, shallow water equations, which are valid when water depth is small compared to typical wavelength of surface waves, and sorption kinetics, in which the range of interaction of a surfactant with an air bubble is much smaller than the size of the bubble itself. In all such cases a detailed simulation of the models which resolves all space or time scales is often inefficient or intractable, and usually even unnecessary to provide a reasonable description of the behavior of the system. In the Chapter ''Multiscale modeling with differential equations'' we present examples of systems described by ODE's and PDE's which are intrinsically multiscale, and illustrate how suitable modeling provide an effective way to capture the essential behavior of the solutions of such systems without resolving the small scales.

We consider the problem of dynamically maintaining the convex hull of a set $S$ of points in the plane under the following special sequence of insertions and deletions (called {\em window-sliding updates}): insert a point to the right of all points of $S$ and delete the leftmost point of $S$. We propose an $O(|S|)$-space data structure that can handle each update in $O(1)$ amortized time, such that standard binary-search-based queries on the convex hull of $S$ can be answered in $O(\log h)$ time, where $h$ is the number of vertices of the convex hull of $S$, and the convex hull itself can be output in $O(h)$ time.

We consider the basic statistical problem of detecting truncation of the uniform distribution on the Boolean hypercube by juntas. More concretely, we give upper and lower bounds on the problem of distinguishing between i.i.d. sample access to either (a) the uniform distribution over $\{0,1\}^n$, or (b) the uniform distribution over $\{0,1\}^n$ conditioned on the satisfying assignments of a $k$-junta $f: \{0,1\}^n\to\{0,1\}$. We show that (up to constant factors) $\min\{2^k + \log{n\choose k}, {2^{k/2}\log^{1/2}{n\choose k}}\}$ samples suffice for this task and also show that a $\log{n\choose k}$ dependence on sample complexity is unavoidable. Our results suggest that testing junta truncation requires learning the set of relevant variables of the junta.

In 2013, Pak and Panova proved the strict unimodality property of $q$-binomial coefficients $\binom{\ell+m}{m}_q$ (as polynomials in $q$) based on the combinatorics of Young tableaux and the semigroup property of Kronecker coefficients. They showed it to be true for all $\ell,m\geq 8$ and a few other cases. We propose a different approach to this problem based on computer algebra, where we establish a closed form for the coefficients of these polynomials and then use cylindrical algebraic decomposition to identify exactly the range of coefficients where strict unimodality holds. This strategy allows us to tackle generalizations of the problem, e.g., to show unimodality with larger gaps or unimodality of related sequences. In particular, we present proofs of two additional cases of a conjecture by Stanley and Zanello.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

北京阿比特科技有限公司