亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the classic budgeted maximum weight independent set (BMWIS) problem. The input is a graph $G = (V,E)$, a weight function $w:V \rightarrow \mathbb{R}_{\geq 0}$, a cost function $c:V \rightarrow \mathbb{R}_{\geq 0}$, and a budget $B \in \mathbb{R}_{\geq 0}$. The goal is to find an independent set $S \subseteq V$ in $G$ such that $\sum_{v \in S} c(v) \leq B$, which maximizes the total weight $\sum_{v \in S} w(v)$. Since the problem on general graphs cannot be approximated within ratio $|V|^{1-\varepsilon}$ for any $\varepsilon>0$, BMWIS has attracted significant attention on graph families for which a maximum weight independent set can be computed in polynomial time. Two notable such graph families are bipartite and perfect graphs. BMWIS is known to be NP-hard on both of these graph families; however, the best possible approximation guarantees for these graphs are wide open. In this paper, we give a tight $2$-approximation for BMWIS on perfect graphs and bipartite graphs. In particular, we give We a $(2-\varepsilon)$ lower bound for BMWIS on bipartite graphs, already for the special case where the budget is replaced by a cardinality constraint, based on the Small Set Expansion Hypothesis (SSEH). For the upper bound, we design a $2$-approximation for BMWIS on perfect graphs using a Lagrangian relaxation based technique. Finally, we obtain a tight lower bound for the capacitated maximum weight independent set (CMWIS) problem, the special case of BMWIS where $w(v) = c(v)~\forall v \in V$. We show that CMWIS on bipartite and perfect graphs is unlikely to admit an efficient polynomial-time approximation scheme (EPTAS). Thus, the existing PTAS for CMWIS is essentially the best we can expect.

相關內容

It is shown that a class of optical physical unclonable functions (PUFs) can be learned to arbitrary precision with arbitrarily high probability, even in the presence of noise, given access to polynomially many challenge-response pairs and polynomially bounded computational power, under mild assumptions about the distributions of the noise and challenge vectors. This extends the results of Rh\"uramir et al. (2013), who showed a subset of this class of PUFs to be learnable in polynomial time in the absence of noise, under the assumption that the optics of the PUF were either linear or had negligible nonlinear effects. We derive polynomial bounds for the required number of samples and the computational complexity of a linear regression algorithm, based on size parameters of the PUF, the distributions of the challenge and noise vectors, and the probability and accuracy of the regression algorithm, with a similar analysis to one done by Bootle et al. (2018), who demonstrated a learning attack on a poorly implemented version of the Learning With Errors problem.

We investigate the equational theory of Kleene algebra terms with variable complements -- (language) complement where it applies only to variables -- w.r.t. languages. While the equational theory w.r.t. languages coincides with the language equivalence (under the standard language valuation) for Kleene algebra terms, this coincidence is broken if we extend the terms with complements. In this paper, we prove the decidability of some fragments of the equational theory: the universality problem is coNP-complete, and the inequational theory t <= s is coNP-complete when t does not contain Kleene-star. To this end, we introduce words-to-letters valuations; they are sufficient valuations for the equational theory and ease us in investigating the equational theory w.r.t. languages. Additionally, we prove that for words with variable complements, the equational theory coincides with the word equivalence.

Emotion recognition is a complex task due to the inherent subjectivity in both the perception and production of emotions. The subjectivity of emotions poses significant challenges in developing accurate and robust computational models. This thesis examines critical facets of emotion recognition, beginning with the collection of diverse datasets that account for psychological factors in emotion production. To handle the challenge of non-representative training data, this work collects the Multimodal Stressed Emotion dataset, which introduces controlled stressors during data collection to better represent real-world influences on emotion production. To address issues with label subjectivity, this research comprehensively analyzes how data augmentation techniques and annotation schemes impact emotion perception and annotator labels. It further handles natural confounding variables and variations by employing adversarial networks to isolate key factors like stress from learned emotion representations during model training. For tackling concerns about leakage of sensitive demographic variables, this work leverages adversarial learning to strip sensitive demographic information from multimodal encodings. Additionally, it proposes optimized sociological evaluation metrics aligned with cost-effective, real-world needs for model testing. This research advances robust, practical emotion recognition through multifaceted studies of challenges in datasets, labels, modeling, demographic and membership variable encoding in representations, and evaluation. The groundwork has been laid for cost-effective, generalizable emotion recognition models that are less likely to encode sensitive demographic information.

Orbifolds are a modern mathematical concept that arises in the research of hyperbolic geometry with applications in computer graphics and visualization. In this paper, we make use of rooms with mirrors as the visual metaphor for orbifolds. Given any arbitrary two-dimensional kaleidoscopic orbifold, we provide an algorithm to construct a Euclidean, spherical, or hyperbolic polygon to match the orbifold. This polygon is then used to create a room for which the polygon serves as the floor and the ceiling. With our system that implements M\"obius transformations, the user can interactively edit the scene and see the reflections of the edited objects. To correctly visualize non-Euclidean orbifolds, we adapt the rendering algorithms to account for the geodesics in these spaces, which light rays follow. Our interactive orbifold design system allows the user to create arbitrary two-dimensional kaleidoscopic orbifolds. In addition, our mirror-based orbifold visualization approach has the potential of helping our users gain insight on the orbifold, including its orbifold notation as well as its universal cover, which can also be the spherical space and the hyperbolic space.

We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern $P[1 .. m]$ on a large repetitive text collection $T[1 .. n]$, which is represented as a (hopefully much smaller) run-length context-free grammar of size $g_{rl}$. We show that the problem can be solved in time $O(m^2 \log^\epsilon n)$, for any constant $\epsilon > 0$, on a data structure of size $O(g_{rl})$. Further, on a locally consistent grammar of size $O(\delta\log\frac{n}{\delta})$, the time decreases to $O(m\log m(\log m + \log^\epsilon n))$. The value $\delta$ is a function of the substring complexity of $T$ and $\Omega(\delta\log\frac{n}{\delta})$ is a tight lower bound on the compressibility of repetitive texts $T$, so our structure has optimal size in terms of $n$ and $\delta$. We extend our results to several related problems, such as finding $k$-MEMs, MUMs, rare MEMs, and applications.

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, randomization and cryptography were harnessed to achieve low-communication broadcast with sub-quadratic total communication and balanced sub-linear cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved. On the other hand, the only nontrivial $\omega(n)$ communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide new communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. 1) We demonstrate a tradeoff between resiliency and communication for protocols secure against $n-o(n)$ static corruptions. For example, $\Omega(n\cdot {\sf polylog}(n))$ messages are needed when the number of honest parties is $n/{\sf polylog}(n)$; $\Omega(n\sqrt{n})$ messages are needed for $O(\sqrt{n})$ honest parties; and $\Omega(n^2)$ messages are needed for $O(1)$ honest parties. Complementarily, we demonstrate broadcast with $O(n\cdot{\sf polylog}(n))$ total communication facing any constant fraction of static corruptions. 2) Our second bound considers $n/2 + k$ corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to $k$ other parties. This rules out, for example, broadcast facing 51% corruptions in which all non-sender parties have sublinear communication locality.

We study the differential privacy (DP) of a core ML problem, linear ordinary least squares (OLS), a.k.a. $\ell_2$-regression. Our key result is that the approximate LS algorithm (ALS) (Sarlos, 2006), a randomized solution to the OLS problem primarily used to improve performance on large datasets, also preserves privacy. ALS achieves a better privacy/utility tradeoff, without modifications or further noising, when compared to alternative private OLS algorithms which modify and/or noise OLS. We give the first {\em tight} DP-analysis for the ALS algorithm and the standard Gaussian mechanism (Dwork et al., 2014) applied to OLS. Our methodology directly improves the privacy analysis of (Blocki et al., 2012) and (Sheffet, 2019)) and introduces new tools which may be of independent interest: (1) the exact spectrum of $(\epsilon, \delta)$-DP parameters (``DP spectrum") for mechanisms whose output is a $d$-dimensional Gaussian, and (2) an improved DP spectrum for random projection (compared to (Blocki et al., 2012) and (Sheffet, 2019)). All methods for private OLS (including ours) assume, often implicitly, restrictions on the input database, such as bounds on leverage and residuals. We prove that such restrictions are necessary. Hence, computing the privacy of mechanisms such as ALS must estimate these database parameters, which can be infeasible in big datasets. For more complex ML models, DP bounds may not even be tractable. There is a need for blackbox DP-estimators (Lu et al., 2022) which empirically estimate a data-dependent privacy. We demonstrate the effectiveness of such a DP-estimator by empirically recovering a DP-spectrum that matches our theory for OLS. This validates the DP-estimator in a nontrivial ML application, opening the door to its use in more complex nonlinear ML settings where theory is unavailable.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司