Probabilistic model checking can provide formal guarantees on the behavior of stochastic models relating to a wide range of quantitative properties, such as runtime, energy consumption or cost. But decision making is typically with respect to the expected value of these quantities, which can mask important aspects of the full probability distribution such as the possibility of high-risk, low-probability events or multimodalities. We propose a distributional extension of probabilistic model checking, applicable to discrete-time Markov chains (DTMCs) and Markov decision processes (MDPs). We formulate distributional queries, which can reason about a variety of distributional measures, such as variance, value-at-risk or conditional value-at-risk, for the accumulation of reward until a co-safe linear temporal logic formula is satisfied. For DTMCs, we propose a method to compute the full distribution to an arbitrary level of precision, based on a graph analysis and forward analysis of the model. For MDPs, we approximate the optimal policy with respect to expected value or conditional value-at-risk using distributional value iteration. We implement our techniques and investigate their performance and scalability across a range of benchmark models. Experimental results demonstrate that our techniques can be successfully applied to check various distributional properties of large probabilistic models.
Sparse high-dimensional functions have arisen as a rich framework to study the behavior of gradient-descent methods using shallow neural networks, showcasing their ability to perform feature learning beyond linear models. Amongst those functions, the simplest are single-index models $f(x) = \phi( x \cdot \theta^*)$, where the labels are generated by an arbitrary non-linear scalar link function $\phi$ applied to an unknown one-dimensional projection $\theta^*$ of the input data. By focusing on Gaussian data, several recent works have built a remarkable picture, where the so-called information exponent (related to the regularity of the link function) controls the required sample complexity. In essence, these tools exploit the stability and spherical symmetry of Gaussian distributions. In this work, building from the framework of \cite{arous2020online}, we explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry might be violated. Focusing on the planted setting where $\phi$ is known, our main results establish that Stochastic Gradient Descent can efficiently recover the unknown direction $\theta^*$ in the high-dimensional regime, under assumptions that extend previous works \cite{yehudai2020learning,wu2022learning}.
Mediation analysis aims to separate the indirect effect through mediators from the direct effect of the exposure on the outcome. It is challenging to perform mediation analysis with neuroimaging data which involves high dimensionality, complex spatial correlations, sparse activation patterns and relatively low signal-to-noise ratio. To address these issues, we develop a new spatially varying coefficient structural equation model for Bayesian Image Mediation Analysis (BIMA). We define spatially varying mediation effects within the potential outcome framework, employing the soft-thresholded Gaussian process prior for functional parameters. We establish the posterior consistency for spatially varying mediation effects along with selection consistency on important regions that contribute to the mediation effects. We develop an efficient posterior computation algorithm scalable to analysis of large-scale imaging data. Through extensive simulations, we show that BIMA can improve the estimation accuracy and computational efficiency for high-dimensional mediation analysis over the existing methods. We apply BIMA to analyze the behavioral and fMRI data in the Adolescent Brain Cognitive Development (ABCD) study with a focus on inferring the mediation effects of the parental education level on the children's general cognitive ability that are mediated through the working memory brain activities.
Koopman representations aim to learn features of nonlinear dynamical systems (NLDS) which lead to linear dynamics in the latent space. Theoretically, such features can be used to simplify many problems in modeling and control of NLDS. In this work we study autoencoder formulations of this problem, and different ways they can be used to model dynamics, specifically for future state prediction over long horizons. We discover several limitations of predicting future states in the latent space and propose an inference-time mechanism, which we refer to as Periodic Reencoding, for faithfully capturing long term dynamics. We justify this method both analytically and empirically via experiments in low and high dimensional NLDS.
Estimating weights in the synthetic control method, typically resulting in sparse weights where only a few control units have non-zero weights, involves an optimization procedure that simultaneously selects and aligns control units to closely match the treated unit. However, this simultaneous selection and alignment of control units may lead to a loss of efficiency. Another concern arising from the aforementioned procedure is its susceptibility to under-fitting due to imperfect pre-treatment fit. It is not uncommon for the linear combination, using nonnegative weights, of pre-treatment period outcomes for the control units to inadequately approximate the pre-treatment outcomes for the treated unit. To address both of these issues, this paper proposes a simple and effective method called Synthetic Regressing Control (SRC). The SRC method begins by performing the univariate linear regression to appropriately align the pre-treatment periods of the control units with the treated unit. Subsequently, a SRC estimator is obtained by synthesizing (taking a weighted average) the fitted controls. To determine the weights in the synthesis procedure, we propose an approach that utilizes a criterion of unbiased risk estimator. Theoretically, we show that the synthesis way is asymptotically optimal in the sense of achieving the lowest possible squared error. Extensive numerical experiments highlight the advantages of the SRC method.
Mixed membership models, or partial membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian mixed membership model for functional data. By using the multivariate Karhunen-Lo\`eve theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on mixed membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership proportions.
Empirical risk minimization can lead to poor generalization behavior on unseen environments if the learned model does not capture invariant feature representations. Invariant risk minimization (IRM) is a recent proposal for discovering environment-invariant representations. IRM was introduced by Arjovsky et al. (2019) and extended by Ahuja et al. (2020). IRM assumes that all environments are available to the learning system at the same time. With this work, we generalize the concept of IRM to scenarios where environments are observed sequentially. We show that existing approaches, including those designed for continual learning, fail to identify the invariant features and models across sequentially presented environments. We extend IRM under a variational Bayesian and bilevel framework, creating a general approach to continual invariant risk minimization. We also describe a strategy to solve the optimization problems using a variant of the alternating direction method of multiplier (ADMM). We show empirically using multiple datasets and with multiple sequential environments that the proposed methods outperform or is competitive with prior approaches.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.