This report describes our approach for the Audio-Visual Diarization (AVD) task of the Ego4D Challenge 2022. Specifically, we present multiple technical improvements over the official baselines. First, we improve the detection performance of the camera wearer's voice activity by modifying the training scheme of its model. Second, we discover that an off-the-shelf voice activity detection model can effectively remove false positives when it is applied solely to the camera wearer's voice activities. Lastly, we show that better active speaker detection leads to a better AVD outcome. Our final method obtains 65.9% DER on the test set of Ego4D, which significantly outperforms all the baselines. Our submission achieved 1st place in the Ego4D Challenge 2022.
This report describes the solution that secured the first place in the "View Synthesis Challenge for Human Heads (VSCHH)" at the ICCV 2023 workshop. Given the sparse view images of human heads, the objective of this challenge is to synthesize images from novel viewpoints. Due to the complexity of textures on the face and the impact of lighting, the baseline method TensoRF yields results with significant artifacts, seriously affecting facial reconstruction. To address this issue, we propose TI-Face, which improves facial reconstruction through tensorial radiance fields (T-Face) and implicit surfaces (I-Face), respectively. Specifically, we employ an SAM-based approach to obtain the foreground mask, thereby filtering out intense lighting in the background. Additionally, we design mask-based constraints and sparsity constraints to eliminate rendering artifacts effectively. The experimental results demonstrate the effectiveness of the proposed improvements and superior performance of our method on face reconstruction. The code will be available at //github.com/RuijieZhu94/TI-Face.
In this paper, we introduce Neural Information Retrieval resources for 11 widely spoken Indian Languages (Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu) from two major Indian language families (Indo-Aryan and Dravidian). These resources include (a) INDIC-MARCO, a multilingual version of the MSMARCO dataset in 11 Indian Languages created using Machine Translation, and (b) Indic-ColBERT, a collection of 11 distinct Monolingual Neural Information Retrieval models, each trained on one of the 11 languages in the INDIC-MARCO dataset. To the best of our knowledge, IndicIRSuite is the first attempt at building large-scale Neural Information Retrieval resources for a large number of Indian languages, and we hope that it will help accelerate research in Neural IR for Indian Languages. Experiments demonstrate that Indic-ColBERT achieves 47.47% improvement in the MRR@10 score averaged over the INDIC-MARCO baselines for all 11 Indian languages except Oriya, 12.26% improvement in the NDCG@10 score averaged over the MIRACL Bengali and Hindi Language baselines, and 20% improvement in the MRR@100 Score over the Mr.Tydi Bengali Language baseline. IndicIRSuite is available at //github.com/saifulhaq95/IndicIRSuite
Deep graph convolution networks (GCNs) have recently shown excellent performance in traffic prediction tasks. However, they face some challenges. First, few existing models consider the influence of auxiliary information, i.e., weather and holidays, which may result in a poor grasp of spatial-temporal dynamics of traffic data. Second, both the construction of a dynamic adjacent matrix and regular graph convolution operations have quadratic computation complexity, which restricts the scalability of GCN-based models. To address such challenges, this work proposes a deep encoder-decoder model entitled AIMSAN. It contains an auxiliary information-aware module (AIM) and sparse cross attention-based graph convolution network (SAN). The former learns multi-attribute auxiliary information and obtains its embedded presentation of different time-window sizes. The latter uses a cross-attention mechanism to construct dynamic adjacent matrices by fusing traffic data and embedded auxiliary data. Then, SAN applies diffusion GCN on traffic data to mine rich spatial-temporal dynamics. Furthermore, AIMSAN considers and uses the spatial sparseness of traffic nodes to reduce the quadratic computation complexity. Experimental results on three public traffic datasets demonstrate that the proposed method outperforms other counterparts in terms of various performance indices. Specifically, the proposed method has competitive performance with the state-of-the-art algorithms but saves 35.74% of GPU memory usage, 42.25% of training time, and 45.51% of validation time on average.
In recent years, Text-to-Image (T2I) models have seen remarkable advancements, gaining widespread adoption. However, this progress has inadvertently opened avenues for potential misuse, particularly in generating inappropriate or Not-Safe-For-Work (NSFW) content. Our work introduces MMA-Diffusion, a framework that presents a significant and realistic threat to the security of T2I models by effectively circumventing current defensive measures in both open-source models and commercial online services. Unlike previous approaches, MMA-Diffusion leverages both textual and visual modalities to bypass safeguards like prompt filters and post-hoc safety checkers, thus exposing and highlighting the vulnerabilities in existing defense mechanisms.
Predicting the collaboration likelihood and measuring cognitive trust to AI systems is more important than ever. To do that, previous research mostly focus solely on the model features (e.g., accuracy, confidence) and ignore the human factor. To address that, we propose several decision-making similarity measures based on divergence metrics (e.g., KL, JSD) calculated over the labels acquired from humans and a wide range of models. We conduct a user study on a textual entailment task, where the users are provided with soft labels from various models and asked to pick the closest option to them. The users are then shown the similarities/differences to their most similar model and are surveyed for their likelihood of collaboration and cognitive trust to the selected system. Finally, we qualitatively and quantitatively analyze the relation between the proposed decision-making similarity measures and the survey results. We find that people tend to collaborate with their most similar models -- measured via JSD -- yet this collaboration does not necessarily imply a similar level of cognitive trust. We release all resources related to the user study (e.g., design, outputs), models, and metrics at our repo.
This report introduces our UniTeam agent - an improved baseline for the "HomeRobot: Open Vocabulary Mobile Manipulation" challenge. The challenge poses problems of navigation in unfamiliar environments, manipulation of novel objects, and recognition of open-vocabulary object classes. This challenge aims to facilitate cross-cutting research in embodied AI using recent advances in machine learning, computer vision, natural language, and robotics. In this work, we conducted an exhaustive evaluation of the provided baseline agent; identified deficiencies in perception, navigation, and manipulation skills; and improved the baseline agent's performance. Notably, enhancements were made in perception - minimizing misclassifications; navigation - preventing infinite loop commitments; picking - addressing failures due to changing object visibility; and placing - ensuring accurate positioning for successful object placement.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.