亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This report describes the solution that secured the first place in the "View Synthesis Challenge for Human Heads (VSCHH)" at the ICCV 2023 workshop. Given the sparse view images of human heads, the objective of this challenge is to synthesize images from novel viewpoints. Due to the complexity of textures on the face and the impact of lighting, the baseline method TensoRF yields results with significant artifacts, seriously affecting facial reconstruction. To address this issue, we propose TI-Face, which improves facial reconstruction through tensorial radiance fields (T-Face) and implicit surfaces (I-Face), respectively. Specifically, we employ an SAM-based approach to obtain the foreground mask, thereby filtering out intense lighting in the background. Additionally, we design mask-based constraints and sparsity constraints to eliminate rendering artifacts effectively. The experimental results demonstrate the effectiveness of the proposed improvements and superior performance of our method on face reconstruction. The code will be available at //github.com/RuijieZhu94/TI-Face.

相關內容

Surface 是微軟(ruan)公司( )旗下(xia)一系(xi)列(lie)使(shi)用(yong) Windows 10(早期為 Windows 8.X)操作系(xi)統(tong)的(de)電腦產品,目前有 Surface、Surface Pro 和(he) Surface Book 三個系(xi)列(lie)。 2012 年 6 月(yue) 18 日,初代 Surface Pro/RT 由(you)時任微軟(ruan) CEO 史(shi)蒂(di)夫·鮑爾默發布于在(zai)洛杉磯舉行的(de)記者會,2012 年 10 月(yue) 26 日上市銷(xiao)售(shou)。

Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at //github.com/ChyaZhang/ChatTraffic.

Simple Stochastic Games (SSGs) were introduced by Anne Condon in 1990, as the simplest version of Stochastic Games for which there is no known polynomial-time algorithm. Condon showed that Stochastic Games are polynomial-time reducible to SSGs, which in turn are polynomial-time reducible to Stopping Games. SSGs are games where all decisions are binary and every move has a random outcome with a known probability distribution. Stopping Games are SSGs that are guaranteed to terminate. There are many algorithms for SSGs, most of which are fast in practice, but they all lack theoretical guarantees for polynomial-time convergence. The pursuit of a polynomial-time algorithm for SSGs is an active area of research. This paper is intended to support such research by making it easier to study the graphical structure of SSGs. Our contributions are: (1) a generating algorithm for Stopping Games, (2) a proof that the algorithm can generate any game, (3) a list of additional polynomial-time reductions that can be made to Stopping Games, (4) an open source generator for generating fully reduced instances of Stopping Games that comes with instructions and is fully documented, (5) a benchmark set of such instances, (6) and an analysis of how two main algorithm types perform on our benchmark set.

Bloom Filters are a space-efficient data structure used for the testing of membership in a set that errs only in the False Positive direction. However, the standard analysis that measures this False Positive rate provides a form of worst case bound that is both overly conservative for the majority of network applications that utilize Bloom Filters, and reduces accuracy by not taking into account the actual state (number of bits set) of the Bloom Filter after each arrival. In this paper, we more accurately characterize the False Positive dynamics of Bloom Filters as they are commonly used in networking applications. In particular, network applications often utilize a Bloom Filter that "recycles": it repeatedly fills, and upon reaching a certain level of saturation, empties and fills again. In this context, it makes more sense to evaluate performance using the average False Positive rate instead of the worst case bound. We show how to efficiently compute the average False Positive rate of recycling Bloom Filter variants via renewal and Markov models. We apply our models to both the standard Bloom Filter and a "two-phase" variant, verify the accuracy of our model with simulations, and find that the previous analysis' worst-case formulation leads to up to a 30\% reduction in the efficiency of Bloom Filter when applied in network applications, while two-phase overhead diminishes as the needed False Positive rate is tightened.

Inversion by Direct Iteration (InDI) is a new formulation for supervised image restoration that avoids the so-called "regression to the mean" effect and produces more realistic and detailed images than existing regression-based methods. It does this by gradually improving image quality in small steps, similar to generative denoising diffusion models. Image restoration is an ill-posed problem where multiple high-quality images are plausible reconstructions of a given low-quality input. Therefore, the outcome of a single step regression model is typically an aggregate of all possible explanations, therefore lacking details and realism. The main advantage of InDI is that it does not try to predict the clean target image in a single step but instead gradually improves the image in small steps, resulting in better perceptual quality. While generative denoising diffusion models also work in small steps, our formulation is distinct in that it does not require knowledge of any analytic form of the degradation process. Instead, we directly learn an iterative restoration process from low-quality and high-quality paired examples. InDI can be applied to virtually any image degradation, given paired training data. In conditional denoising diffusion image restoration the denoising network generates the restored image by repeatedly denoising an initial image of pure noise, conditioned on the degraded input. Contrary to conditional denoising formulations, InDI directly proceeds by iteratively restoring the input low-quality image, producing high-quality results on a variety of image restoration tasks, including motion and out-of-focus deblurring, super-resolution, compression artifact removal, and denoising.

Recently, there have been significant advancements in Image Restoration based on CNN and transformer. However, the inherent characteristics of the Image Restoration task are often overlooked in many works. These works often focus on the basic block design and stack numerous basic blocks to the model, leading to redundant parameters and unnecessary computations and hindering the efficiency of the image restoration. In this paper, we propose a Lightweight Image Restoration network called LIR to efficiently remove degradation (blur, rain, noise, haze, etc.). A key component in LIR is the Efficient Adaptive Attention (EAA) Block, which is mainly composed of Adaptive Filters and Attention Blocks. It is capable of adaptively sharpening contours, removing degradation, and capturing global information in various image restoration scenes in an efficient and computation-friendly manner. In addition, through a simple structural design, LIR addresses the degradations existing in the local and global residual connections that are ignored by modern networks. Extensive experiments demonstrate that our LIR achieves comparable performance to state-of-the-art networks on most benchmarks with fewer parameters and computations. It is worth noting that our LIR produces better visual results than state-of-the-art networks that are more in line with the human aesthetic.

Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.

Over the past years, Machine Learning-as-a-Service (MLaaS) has received a surging demand for supporting Machine Learning-driven services to offer revolutionized user experience across diverse application areas. MLaaS provides inference service with low inference latency based on an ML model trained using a dataset collected from numerous individual data owners. Recently, for the sake of data owners' privacy and to comply with the "right to be forgotten (RTBF)" as enacted by data protection legislation, many machine unlearning methods have been proposed to remove data owners' data from trained models upon their unlearning requests. However, despite their promising efficiency, almost all existing machine unlearning methods handle unlearning requests independently from inference requests, which unfortunately introduces a new security issue of inference service obsolescence and a privacy vulnerability of undesirable exposure for machine unlearning in MLaaS. In this paper, we propose the ERASER framework for machinE unleaRning in MLaAS via an inferencE seRving-aware approach. ERASER strategically choose appropriate unlearning execution timing to address the inference service obsolescence issue. A novel inference consistency certification mechanism is proposed to avoid the violation of RTBF principle caused by postponed unlearning executions, thereby mitigating the undesirable exposure vulnerability. ERASER offers three groups of design choices to allow for tailor-made variants that best suit the specific environments and preferences of various MLaaS systems. Extensive empirical evaluations across various settings confirm ERASER's effectiveness, e.g., it can effectively save up to 99% of inference latency and 31% of computation overhead over the inference-oblivion baseline.

The increased utilization of Artificial Intelligence (AI) solutions brings with it inherent risks, such as misclassification and sub-optimal execution time performance, due to errors introduced in their deployment infrastructure because of problematic configuration and software faults. On top of that, AI methods such as Deep Neural Networks (DNNs) are utilized to perform demanding, resource-intensive and even safety-critical tasks, and in order to effectively increase the performance of the DNN models deployed, a variety of Machine Learning (ML) compilers have been developed, allowing compatibility of DNNs with a variety of hardware acceleration devices, such as GPUs and TPUs. Furthermore the correctness of the compilation process should be verified. In order to allow developers and researchers to explore the robustness of DNN models deployed on different hardware accelerators via ML compilers, in this paper we propose MutateNN, a tool that provides mutation testing and model analysis features in the context of deployment on different hardware accelerators. To demonstrate the capabilities of MutateNN, we focus on the image recognition domain by applying mutation testing to 7 well-established models utilized for image classification. We instruct 21 mutations of 6 different categories, and deploy our mutants on 4 different hardware acceleration devices of varying capabilities. Our results indicate that models are proven robust to changes related to layer modifications and arithmetic operators, while presenting discrepancies of up to 90.3% in mutants related to conditional operators. We also observed unexpectedly severe performance degradation on mutations related to arithmetic types of variables, leading the mutants to produce the same classifications for all dataset inputs.

This paper investigates the voting behaviors of Large Language Models (LLMs), particularly OpenAI's GPT4 and LLaMA2, and their alignment with human voting patterns. Our approach included a human voting experiment to establish a baseline for human preferences and a parallel experiment with LLM agents. The study focused on both collective outcomes and individual preferences, revealing differences in decision-making and inherent biases between humans and LLMs. We observed a trade-off between preference diversity and alignment in LLMs, with a tendency towards more uniform choices as compared to the diverse preferences of human voters. This finding indicates that LLMs could lead to more homogenized collective outcomes when used in voting assistance, underscoring the need for cautious integration of LLMs into democratic processes.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司