Today's networks are struggling to scale and satisfy the high number and high variety of co-existing network requirements. While existing congestion control (CC) protocols are designed to handle strict classification of network flows into one or few priorities, a more granular and dynamic congestion control is needed. In this paper we present Hercules, a novel CC protocol based on an online learning approach, which supports unbounded and continues requirements space. We implemented Hercules as a QUIC module and we show, through analytical analysis and real-world experiments, that it provides between $50\%-250\%$ higher QoS for co-existing diverse network flows and outperforms state-of-the-art CC protocols, even under high network congestion.
Recurrent neural networks and Transformers have recently dominated most applications in hyperspectral (HS) imaging, owing to their capability to capture long-range dependencies from spectrum sequences. However, despite the success of these sequential architectures, the non-ignorable inefficiency caused by either difficulty in parallelization or computationally prohibitive attention still hinders their practicality, especially for large-scale observation in remote sensing scenarios. To address this issue, we herein propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification. SpectralMamba features the simplified but adequate modeling of HS data dynamics at two levels. First, in spatial-spectral space, a dynamical mask is learned by efficient convolutions to simultaneously encode spatial regularity and spectral peculiarity, thus attenuating the spectral variability and confusion in discriminative representation learning. Second, the merged spectrum can then be efficiently operated in the hidden state space with all parameters learned input-dependent, yielding selectively focused responses without reliance on redundant attention or imparallelizable recurrence. To explore the room for further computational downsizing, a piece-wise scanning mechanism is employed in-between, transferring approximately continuous spectrum into sequences with squeezed length while maintaining short- and long-term contextual profiles among hundreds of bands. Through extensive experiments on four benchmark HS datasets acquired by satellite-, aircraft-, and UAV-borne imagers, SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) have long been the predominant backbone networks for visual representation learning. While ViTs have recently gained prominence over CNNs due to their superior fitting capabilities, their scalability is largely constrained by the quadratic complexity of attention computation. Inspired by the capability of Mamba in efficiently modeling long sequences, we propose VMamba, a generic vision backbone model aiming to reduce the computational complexity to linear while retaining ViTs' advantageous features. To enhance VMamba's adaptability in processing vision data, we introduce the Cross-Scan Module (CSM) to enable 1D selective scanning in 2D image space with global receptive fields. Additionally, we make further improvements in implementation details and architectural designs to enhance VMamba's performance and boost its inference speed. Extensive experimental results demonstrate VMamba's promising performance across various visual perception tasks, highlighting its pronounced advantages in input scaling efficiency compared to existing benchmark models. Source code is available at //github.com/MzeroMiko/VMamba.
The transformer networks are extensively utilized in face forgery detection due to their scalability across large datasets.Despite their success, transformers face challenges in balancing the capture of global context, which is crucial for unveiling forgery clues, with computational complexity.To mitigate this issue, we introduce Band-Attention modulated RetNet (BAR-Net), a lightweight network designed to efficiently process extensive visual contexts while avoiding catastrophic forgetting.Our approach empowers the target token to perceive global information by assigning differential attention levels to tokens at varying distances. We implement self-attention along both spatial axes, thereby maintaining spatial priors and easing the computational burden.Moreover, we present the adaptive frequency Band-Attention Modulation mechanism, which treats the entire Discrete Cosine Transform spectrogram as a series of frequency bands with learnable weights.Together, BAR-Net achieves favorable performance on several face forgery datasets, outperforming current state-of-the-art methods.
In recent years, deep neural networks (DNNs) have gained remarkable achievement in computer vision tasks, and the success of DNNs often depends greatly on the richness of data. However, the acquisition process of data and high-quality ground truth requires a lot of manpower and money. In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images, i.e., noisy labels. The emergence of noisy labels is inevitable. Moreover, since research shows that DNNs can easily fit noisy labels, the existence of noisy labels will cause significant damage to the model training process. Therefore, it is crucial to combat noisy labels for computer vision tasks, especially for classification tasks. In this survey, we first comprehensively review the evolution of different deep learning approaches for noisy label combating in the image classification task. In addition, we also review different noise patterns that have been proposed to design robust algorithms. Furthermore, we explore the inner pattern of real-world label noise and propose an algorithm to generate a synthetic label noise pattern guided by real-world data. We test the algorithm on the well-known real-world dataset CIFAR-10N to form a new real-world data-guided synthetic benchmark and evaluate some typical noise-robust methods on the benchmark.
Image fusion typically employs non-invertible neural networks to merge multiple source images into a single fused image. However, for clinical experts, solely relying on fused images may be insufficient for making diagnostic decisions, as the fusion mechanism blends features from source images, thereby making it difficult to interpret the underlying tumor pathology. We introduce FusionINN, a novel invertible image fusion framework, capable of efficiently generating fused images and also decomposing them back to the source images by solving the inverse of the fusion process. FusionINN guarantees lossless one-to-one pixel mapping by integrating a normally distributed latent image alongside the fused image to facilitate the generative modeling of the decomposition process. To the best of our knowledge, we are the first to investigate the decomposability of fused images, which is particularly crucial for life-sensitive applications such as medical image fusion compared to other tasks like multi-focus or multi-exposure image fusion. Our extensive experimentation validates FusionINN over existing discriminative and generative fusion methods, both subjectively and objectively. Moreover, compared to a recent denoising diffusion-based fusion model, our approach offers faster and qualitatively better fusion results. We also exhibit the clinical utility of our results in aiding disease prognosis.
With the increasing popularity of smart homes, more and more devices need to connect to home networks. Traditional home networks mainly rely on centralized networking, where an excessive number of devices in the centralized topology can increase the pressure on the central router, potentially leading to decreased network performance metrics such as communication latency. To address the latency performance issues brought about by centralized networks, this paper proposes a new network system called DHNet, and designs an algorithm for clustering networking and communication based on vector routing. Communication within clusters in a simulated virtual environment achieves a latency of approximately 0.7 milliseconds. Furthermore, by directly using the first non-"lo" network card address of a device as the protocol's network layer address, the protocol avoids the several tens of milliseconds of access latency caused by DHCP. The integration of service discovery functionality into the network layer protocol is achieved through a combination of "server-initiated service push" and "client request + server reply" methods. Compared to traditional application-layer DNS passive service discovery, the average latency is reduced by over 50%. The PVH protocol is implemented in the user space using the Go programming language, with implementation details drawn from Google's gVisor project. The code has been ported from x86\_64 Linux computers to devices such as OpenWrt routers and Android smartphones. The PVH protocol can communicate through "tunnels" to provide IP compatibility, allowing existing applications based on TCP/IP to communicate using the PVH protocol without requiring modifications to their code.
Graphs are widely used as a popular representation of the network structure of connected data. Graph data can be found in a broad spectrum of application domains such as social systems, ecosystems, biological networks, knowledge graphs, and information systems. With the continuous penetration of artificial intelligence technologies, graph learning (i.e., machine learning on graphs) is gaining attention from both researchers and practitioners. Graph learning proves effective for many tasks, such as classification, link prediction, and matching. Generally, graph learning methods extract relevant features of graphs by taking advantage of machine learning algorithms. In this survey, we present a comprehensive overview on the state-of-the-art of graph learning. Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning. Major models and algorithms under these categories are reviewed respectively. We examine graph learning applications in areas such as text, images, science, knowledge graphs, and combinatorial optimization. In addition, we discuss several promising research directions in this field.
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.