亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a directed graph $G$ and integers $k$ and $l$, a D-core is the maximal subgraph $H \subseteq G$ such that for every vertex of $H$, its in-degree and out-degree are no smaller than $k$ and $l$, respectively. For a directed graph $G$, the problem of D-core decomposition aims to compute the non-empty D-cores for all possible values of $k$ and $l$. In the literature, several \emph{peeling-based} algorithms have been proposed to handle D-core decomposition. However, the peeling-based algorithms that work in a sequential fashion and require global graph information during processing are mainly designed for \emph{centralized} settings, which cannot handle large-scale graphs efficiently in distributed settings. Motivated by this, we study the \emph{distributed} D-core decomposition problem in this paper. We start by defining a concept called \emph{anchored coreness}, based on which we propose a new H-index-based algorithm for distributed D-core decomposition. Furthermore, we devise a novel concept, namely \emph{skyline coreness}, and show that the D-core decomposition problem is equivalent to the computation of skyline corenesses for all vertices. We design an efficient D-index to compute the skyline corenesses distributedly. We implement the proposed algorithms under both vertex-centric and block-centric distributed graph processing frameworks. Moreover, we theoretically analyze the algorithm and message complexities. Extensive experiments on large real-world graphs with billions of edges demonstrate the efficiency of the proposed algorithms in terms of both the running time and communication overhead.

相關內容

For relational structures A, B of the same signature, the Promise Constraint Satisfaction Problem PCSP(A,B) asks whether a given input structure maps homomorphically to A or does not even map to B. We are promised that the input satisfies exactly one of these two cases. If there exists a structure C with homomorphisms $A\to C\to B$, then PCSP(A,B) reduces naturally to CSP(C). To the best of our knowledge all known tractable PCSPs reduce to tractable CSPs in this way. However Barto showed that some PCSPs over finite structures A, B require solving CSPs over infinite C. We show that even when such a reduction to finite C is possible, this structure may become arbitrarily large. For every integer $n>1$ and every prime p we give A, B of size n with a single relation of arity $n^p$ such that PCSP(A, B) reduces via a chain of homomorphisms $ A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In a second family of examples, for every prime $p\geq 7$ we construct A, B of size $p-1$ with a single ternary relation such that PCSP(A, B) reduces via $A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In contrast we show that if A, B are graphs and PCSP(A,B) reduces to tractable CSP(C) for some finite digraph C, then already A or B has a tractable CSP. This extends results and answers a question of Deng et al.

While algorithms for planar graphs have received a lot of attention, few papers have focused on the additional power that one gets from assuming an embedding of the graph is available. While in the classic sequential setting, this assumption gives no additional power (as a planar graph can be embedded in linear time), we show that this is far from being the case in other settings. We assume that the embedding is straight-line, but our methods also generalize to non-straight-line embeddings. Specifically, we focus on sublinear-time computation and massively parallel computation (MPC). Our main technical contribution is a sublinear-time algorithm for computing a relaxed version of an $r$-division. We then show how this can be used to estimate Lipschitz additive graph parameters. This includes, for example, the maximum matching, maximum independent set, or the minimum dominating set. We also show how this can be used to solve some property testing problems with respect to the vertex edit distance. In the second part of our paper, we show an MPC algorithm that computes an $r$-division of the input graph. We show how this can be used to solve various classical graph problems with space per machine of $O(n^{2/3+\epsilon})$ for some $\epsilon>0$, and while performing $O(1)$ rounds. This includes for example approximate shortest paths or the minimum spanning tree. Our results also imply an improved MPC algorithm for Euclidean minimum spanning tree.

Conditional independence models associated with directed acyclic graphs (DAGs) may be characterized in at least three different ways: via a factorization, the global Markov property (given by the d-separation criterion), and the local Markov property. Marginals of DAG models also imply equality constraints that are not conditional independences; the well-known `Verma constraint' is an example. Constraints of this type are used for testing edges, and in a computationally efficient marginalization scheme via variable elimination. We show that equality constraints like the `Verma constraint' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via ordered local and global Markov properties, and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We prove that marginal distributions of DAG models lie in this model, and that a set of these constraints given by Tian provides an alternative definition of the model. Finally, we show that the fixing operation used to define the model leads to a particularly simple characterization of identifiable causal effects in hidden variable causal DAG models.

We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.

This paper presents new deterministic and distributed low-diameter decomposition algorithms for weighted graphs. In particular, we show that if one can efficiently compute approximate distances in a parallel or a distributed setting, one can also efficiently compute low-diameter decompositions. This consequently implies solutions to many fundamental distance based problems using a polylogarithmic number of approximate distance computations. Our low-diameter decomposition generalizes and extends the line of work starting from [Rozho\v{n}, Ghaffari STOC 2020] to weighted graphs in a very model-independent manner. Moreover, our clustering results have additional useful properties, including strong-diameter guarantees, separation properties, restricting cluster centers to specified terminals, and more. Applications include: -- The first near-linear work and polylogarithmic depth randomized and deterministic parallel algorithm for low-stretch spanning trees (LSST) with polylogarithmic stretch. Previously, the best parallel LSST algorithm required $m \cdot n^{o(1)}$ work and $n^{o(1)}$ depth and was inherently randomized. No deterministic LSST algorithm with truly sub-quadratic work and sub-linear depth was known. -- The first near-linear work and polylogarithmic depth deterministic algorithm for computing an $\ell_1$-embedding into polylogarithmic dimensional space with polylogarithmic distortion. The best prior deterministic algorithms for $\ell_1$-embeddings either require large polynomial work or are inherently sequential. Even when we apply our techniques to the classical problem of computing a ball-carving with strong-diameter $O(\log^2 n)$ in an unweighted graph, our new clustering algorithm still leads to an improvement in round complexity from $O(\log^{10} n)$ rounds [Chang, Ghaffari PODC 21] to $O(\log^{4} n)$.

We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.

In this short note, we show that for any $\epsilon >0$ and $k<n^{0.5-\epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $\Theta (n\log n)$.

Policy gradient (PG) estimation becomes a challenge when we are not allowed to sample with the target policy but only have access to a dataset generated by some unknown behavior policy. Conventional methods for off-policy PG estimation often suffer from either significant bias or exponentially large variance. In this paper, we propose the double Fitted PG estimation (FPG) algorithm. FPG can work with an arbitrary policy parameterization, assuming access to a Bellman-complete value function class. In the case of linear value function approximation, we provide a tight finite-sample upper bound on policy gradient estimation error, that is governed by the amount of distribution mismatch measured in feature space. We also establish the asymptotic normality of FPG estimation error with a precise covariance characterization, which is further shown to be statistically optimal with a matching Cramer-Rao lower bound. Empirically, we evaluate the performance of FPG on both policy gradient estimation and policy optimization, using either softmax tabular or ReLU policy networks. Under various metrics, our results show that FPG significantly outperforms existing off-policy PG estimation methods based on importance sampling and variance reduction techniques.

This paper takes a different approach for the distributed linear parameter estimation over a multi-agent network. The parameter vector is considered to be stochastic with a Gaussian distribution. The sensor measurements at each agent are linear and corrupted with additive white Gaussian noise. Under such settings, this paper presents a novel distributed estimation algorithm that fuses the the concepts of consensus and innovations by incorporating the consensus terms (of neighboring estimates) into the innovation terms. Under the assumption of distributed parameter observability, introduced in this paper, we design the optimal gain matrices such that the distributed estimates are consistent and achieves fast convergence.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

北京阿比特科技有限公司