The arrival of digital platforms has revolutionized occupational health by giving the possibility to Occupational Health Services (SPSTI) to acquire databases to offer professionals new possibilities for action. However, in a sector of activity that has been questioning the development of multidisciplinarity for 20 years, the arrival of new tools can sometimes seem to be a quick solution. The study, conducted in a precursor SPSTI in terms of the development of digital tools, aims to take stock of the methods and impacts of instrumental and organizational transformations for health professionals as well as for members of the technical teams of the SPSTI. It is a question of highlighting the brakes and the levers as well as the various possibilities of accompaniment to consider.
Language use has been shown to correlate with depression, but large-scale validation is needed. Traditional methods like clinic studies are expensive. So, natural language processing has been employed on social media to predict depression, but limitations remain-lack of validated labels, biased user samples, and no context. Our study identified 29 topics in 3919 smartphone-collected speech recordings from 265 participants using the Whisper tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal to 10 were regarded as risk topics for depression: No Expectations, Sleep, Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic emergence and associations with depression, we compared behavioral (from wearables) and linguistic characteristics across identified topics. The correlation between topic shifts and changes in depression severity over time was also investigated, indicating the importance of longitudinally monitoring language use. We also tested the BERTopic model on a similar smaller dataset (356 speech recordings from 57 participants), obtaining some consistent results. In summary, our findings demonstrate specific speech topics may indicate depression severity. The presented data-driven workflow provides a practical approach to collecting and analyzing large-scale speech data from real-world settings for digital health research.
Electronic health records (EHR) data have considerable variability in data completeness across sites and patients. Lack of "EHR data-continuity" or "EHR data-discontinuity", defined as "having medical information recorded outside the reach of an EHR system" can lead to a substantial amount of information bias. The objective of this study was to comprehensively evaluate (1) how EHR data-discontinuity introduces data bias, (2) case finding algorithms affect downstream prediction models, and (3) how algorithmic fairness is associated with racial-ethnic disparities. We leveraged our EHRs linked with Medicaid and Medicare claims data in the OneFlorida+ network and used a validated measure (i.e., Mean Proportions of Encounters Captured [MPEC]) to estimate patients' EHR data continuity. We developed a machine learning model for predicting type 2 diabetes (T2D) diagnosis as the use case for this work. We found that using cohorts selected by different levels of EHR data-continuity affects utilities in disease prediction tasks. The prediction models trained on high continuity data will have a worse fit on low continuity data. We also found variations in racial and ethnic disparities in model performances and model fairness in models developed using different degrees of data continuity. Our results suggest that careful evaluation of data continuity is critical to improving the validity of real-world evidence generated by EHR data and health equity.
We describe a path to humanity safely thriving with powerful Artificial General Intelligences (AGIs) by building them to provably satisfy human-specified requirements. We argue that this will soon be technically feasible using advanced AI for formal verification and mechanistic interpretability. We further argue that it is the only path which guarantees safe controlled AGI. We end with a list of challenge problems whose solution would contribute to this positive outcome and invite readers to join in this work.
Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.
Recent architectural developments have enabled recurrent neural networks (RNNs) to reach and even surpass the performance of Transformers on certain sequence modeling tasks. These modern RNNs feature a prominent design pattern: linear recurrent layers interconnected by feedforward paths with multiplicative gating. Here, we show how RNNs equipped with these two design elements can exactly implement (linear) self-attention, the main building block of Transformers. By reverse-engineering a set of trained RNNs, we find that gradient descent in practice discovers our construction. In particular, we examine RNNs trained to solve simple in-context learning tasks on which Transformers are known to excel and find that gradient descent instills in our RNNs the same attention-based in-context learning algorithm used by Transformers. Our findings highlight the importance of multiplicative interactions in neural networks and suggest that certain RNNs might be unexpectedly implementing attention under the hood.
Exact null distributions of goodness-of-fit test statistics are generally challenging to obtain in tractable forms. Practitioners are therefore usually obliged to rely on asymptotic null distributions or Monte Carlo methods, either in the form of a lookup table or carried out on demand, to apply a goodness-of-fit test. There exist simple and useful transformations of several classic goodness-of-fit test statistics that stabilize their exact-$n$ critical values for varying sample sizes $n$. However, detail on the accuracy of these and subsequent transformations in yielding exact $p$-values, or even deep understanding on the derivation of several transformations, is still scarce nowadays. The latter stabilization approach is explained and automated to (i) expand its scope of applicability and (ii) yield upper-tail exact $p$-values, as opposed to exact critical values for fixed significance levels. Improvements on the stabilization accuracy of the exact null distributions of the Kolmogorov-Smirnov, Cram\'er-von Mises, Anderson-Darling, Kuiper, and Watson test statistics are shown. In addition, a parameter-dependent exact-$n$ stabilization for several novel statistics for testing uniformity on the hypersphere of arbitrary dimension is provided. A data application in astronomy illustrates the benefits of the advocated stabilization for quickly analyzing small-to-moderate sequentially-measured samples.
Deep neural networks have shown remarkable performance when trained on independent and identically distributed data from a fixed set of classes. However, in real-world scenarios, it can be desirable to train models on a continuous stream of data where multiple classification tasks are presented sequentially. This scenario, known as Continual Learning (CL) poses challenges to standard learning algorithms which struggle to maintain knowledge of old tasks while learning new ones. This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately. However, none considers the increasing difficulty of the classification task, which inherently results in performance loss for any model. In that sense, we analyze some limitations of current metrics and identify the presence of setup-induced forgetting. Therefore, we propose new metrics that account for the task's increasing difficulty. Through experiments on benchmark datasets, we demonstrate that our proposed metrics can provide new insights into the stability-plasticity trade-off achieved by models in the continual learning environment.
Transformer based large language models with emergent capabilities are becoming increasingly ubiquitous in society. However, the task of understanding and interpreting their internal workings, in the context of adversarial attacks, remains largely unsolved. Gradient-based universal adversarial attacks have been shown to be highly effective on large language models and potentially dangerous due to their input-agnostic nature. This work presents a novel geometric perspective explaining universal adversarial attacks on large language models. By attacking the 117M parameter GPT-2 model, we find evidence indicating that universal adversarial triggers could be embedding vectors which merely approximate the semantic information in their adversarial training region. This hypothesis is supported by white-box model analysis comprising dimensionality reduction and similarity measurement of hidden representations. We believe this new geometric perspective on the underlying mechanism driving universal attacks could help us gain deeper insight into the internal workings and failure modes of LLMs, thus enabling their mitigation.
Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets.
Large language models (LLMs) have been applied to tasks in healthcare, ranging from medical exam questions to responding to patient questions. With increasing institutional partnerships between companies producing LLMs and healthcare systems, real world clinical application is coming closer to reality. As these models gain traction, it is essential for healthcare practitioners to understand what LLMs are, their development, their current and potential applications, and the associated pitfalls when utilized in medicine. This review and accompanying tutorial aim to give an overview of these topics to aid healthcare practitioners in understanding the rapidly changing landscape of LLMs as applied to medicine.