亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, much exertion has been paid to design graph self-supervised methods to obtain generalized pre-trained models, and adapt pre-trained models onto downstream tasks through fine-tuning. However, there exists an inherent gap between pretext and downstream graph tasks, which insufficiently exerts the ability of pre-trained models and even leads to negative transfer. Meanwhile, prompt tuning has seen emerging success in natural language processing by aligning pre-training and fine-tuning with consistent training objectives. In this paper, we identify the challenges for graph prompt tuning: The first is the lack of a strong and universal pre-training task across sundry pre-training methods in graph domain. The second challenge lies in the difficulty of designing a consistent training objective for both pre-training and downstream tasks. To overcome above obstacles, we propose a novel framework named SGL-PT which follows the learning strategy ``Pre-train, Prompt, and Predict''. Specifically, we raise a strong and universal pre-training task coined as SGL that acquires the complementary merits of generative and contrastive self-supervised graph learning. And aiming for graph classification task, we unify pre-training and fine-tuning by designing a novel verbalizer-free prompting function, which reformulates the downstream task in a similar format as pretext task. Empirical results show that our method surpasses other baselines under unsupervised setting, and our prompt tuning method can greatly facilitate models on biological datasets over fine-tuning methods.

相關內容

Recently, there has been a significant advancement in text-to-image diffusion models, leading to groundbreaking performance in 2D image generation. These advancements have been extended to 3D models, enabling the generation of novel 3D objects from textual descriptions. This has evolved into NeRF editing methods, which allow the manipulation of existing 3D objects through textual conditioning. However, existing NeRF editing techniques have faced limitations in their performance due to slow training speeds and the use of loss functions that do not adequately consider editing. To address this, here we present a novel 3D NeRF editing approach dubbed ED-NeRF by successfully embedding real-world scenes into the latent space of the latent diffusion model (LDM) through a unique refinement layer. This approach enables us to obtain a NeRF backbone that is not only faster but also more amenable to editing compared to traditional image space NeRF editing. Furthermore, we propose an improved loss function tailored for editing by migrating the delta denoising score (DDS) distillation loss, originally used in 2D image editing to the three-dimensional domain. This novel loss function surpasses the well-known score distillation sampling (SDS) loss in terms of suitability for editing purposes. Our experimental results demonstrate that ED-NeRF achieves faster editing speed while producing improved output quality compared to state-of-the-art 3D editing models.

Recently, there has been growing interest in extending the context length of large language models (LLMs), aiming to effectively process long inputs of one turn or conversations with more extensive histories. While proprietary models such as GPT-4 and Claude can largely preserve the reasoning ability in an extended context, open-source models are still progressing through the early stages of development. To bridge this gap, we propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs) addressing two key aspects: dataset construction and evaluation metrics. On the one hand, we build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs encompassing diverse question styles, domains, and input length (3k$\sim$200k tokens). On the other hand, we investigate the effectiveness in evalution metrics for LCLMs. Results show that popular n-gram matching metrics generally can not correlate well with human judgment, and thus we strongly advocate for length-instruction-enhanced (LIE) evaluation and employing LLM judges. We conducted a comprehensive study of 4 popular commercial LLMs and 12 open-source counterparts using the L-Eval benchmark. Our empirical findings offer useful insights into the study of LCLMs and lay the groundwork for the development of more principled evaluation of these models.

Text-to-image model personalization aims to introduce a user-provided concept to the model, allowing its synthesis in diverse contexts. However, current methods primarily focus on the case of learning a single concept from multiple images with variations in backgrounds and poses, and struggle when adapted to a different scenario. In this work, we introduce the task of textual scene decomposition: given a single image of a scene that may contain several concepts, we aim to extract a distinct text token for each concept, enabling fine-grained control over the generated scenes. To this end, we propose augmenting the input image with masks that indicate the presence of target concepts. These masks can be provided by the user or generated automatically by a pre-trained segmentation model. We then present a novel two-phase customization process that optimizes a set of dedicated textual embeddings (handles), as well as the model weights, striking a delicate balance between accurately capturing the concepts and avoiding overfitting. We employ a masked diffusion loss to enable handles to generate their assigned concepts, complemented by a novel loss on cross-attention maps to prevent entanglement. We also introduce union-sampling, a training strategy aimed to improve the ability of combining multiple concepts in generated images. We use several automatic metrics to quantitatively compare our method against several baselines, and further affirm the results using a user study. Finally, we showcase several applications of our method. Project page is available at: //omriavrahami.com/break-a-scene/

Graphical perception studies are a key element of visualization research, forming the basis of design recommendations and contributing to our understanding of how people make sense of visualizations. However, graphical perception studies typically include only brief training sessions, and the impact of longer and more in-depth feedback remains unclear. In this paper, we explore the design and evaluation of feedback for graphical perception tasks, called VisQuiz. Using a quiz-like metaphor, we design feedback for a typical visualization comparison experiment, showing participants their answer alongside the correct answer in an animated sequence in each trial. We extend this quiz metaphor to include summary feedback after each stage of the experiment, providing additional moments for participants to reflect on their performance. To evaluate VisQuiz, we conduct a between-subjects experiment, including three stages of 40 trials each with a control condition that included only summary feedback. Results from n = 80 participants show that once participants started receiving trial feedback (Stage 2) they performed significantly better with bubble charts than those in the control condition. This effect carried over when feedback was removed (Stage 3). Results also suggest an overall trend of improved performance due to feedback. We discuss these findings in the context of other visualization literacy efforts, and possible future work at the intersection of visualization, feedback, and learning. Experiment data and analysis scripts are available at the following repository //osf.io/jys5d/

Designers rely on visual search to explore and develop ideas in early design stages. However, designers can struggle to identify suitable text queries to initiate a search or to discover images for similarity-based search that can adequately express their intent. We propose GenQuery, a novel system that integrates generative models into the visual search process. GenQuery can automatically elaborate on users' queries and surface concrete search directions when users only have abstract ideas. To support precise expression of search intents, the system enables users to generatively modify images and use these in similarity-based search. In a comparative user study (N=16), designers felt that they could more accurately express their intents and find more satisfactory outcomes with GenQuery compared to a tool without generative features. Furthermore, the unpredictability of generations allowed participants to uncover more diverse outcomes. By supporting both convergence and divergence, GenQuery led to a more creative experience.

Speech enhancement aims to improve the quality of speech signals in terms of quality and intelligibility, and speech editing refers to the process of editing the speech according to specific user needs. In this paper, we propose a Unified Speech Enhancement and Editing (uSee) model with conditional diffusion models to handle various tasks at the same time in a generative manner. Specifically, by providing multiple types of conditions including self-supervised learning embeddings and proper text prompts to the score-based diffusion model, we can enable controllable generation of the unified speech enhancement and editing model to perform corresponding actions on the source speech. Our experiments show that our proposed uSee model can achieve superior performance in both speech denoising and dereverberation compared to other related generative speech enhancement models, and can perform speech editing given desired environmental sound text description, signal-to-noise ratios (SNR), and room impulse responses (RIR). Demos of the generated speech are available at //muqiaoy.github.io/usee.

Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.

Pre-trained large language models have significantly improved code generation. As these models scale up, there is an increasing need for the output to handle more intricate tasks and to be appropriately specialized to particular domains. Bioinformatics provides an important domain. In this field generating functional programs poses additional notable challenges due to the amount of specialized domain knowledge, the need for complicated data operations, and intricate functional dependencies between the operations. Here, we present BioCoder, a benchmark developed to evaluate existing pre-trained models in generating bioinformatics code. In relation to function-code generation, BioCoder covers potential package dependencies, class declarations, and global variables. It incorporates 1026 functions and 1243 methods in Python and Java from GitHub and 253 examples from the Rosalind Project. BioCoder incorporates a fuzz-testing framework for evaluation, and we have applied it to evaluate many models including InCoder, CodeGen, CodeGen2, SantaCoder, StarCoder, StarCoder+, InstructCodeT5+, GPT-3.5, and GPT-4. The results highlight two key aspects of successful models: 1) that they contain specific domain knowledge of bioinformatics (beyond just coding knowledge); 2) that they accommodate a long prompt with full context (i.e. functional dependencies). Our dataset, benchmark, Docker images, and scripts required for testing are all available at //github.com/gersteinlab/biocoder.

We present MOTLEE, a distributed mobile multi-object tracking algorithm that enables a team of robots to collaboratively track moving objects in the presence of localization error. Existing approaches to distributed tracking make limiting assumptions regarding the relative spatial relationship of sensors, including assuming a static sensor network or that perfect localization is available. Instead, we develop an algorithm based on the Kalman-Consensus filter for distributed tracking that properly leverages localization uncertainty in collaborative tracking. Further, our method allows the team to maintain an accurate understanding of dynamic objects in the environment by realigning robot frames and incorporating frame alignment uncertainty into our object tracking formulation. We evaluate our method in hardware on a team of three mobile ground robots tracking four people. Compared to previous works that do not account for localization error, we show that MOTLEE is resilient to localization uncertainties, enabling accurate tracking in distributed, dynamic settings with mobile tracking sensors.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司