亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As an emerging service for in-browser content delivery, peer-assisted delivery network (PDN) is reported to offload up to 95\% of bandwidth consumption for video streaming, significantly reducing the cost incurred by traditional CDN services. With such benefits, PDN services significantly impact today's video streaming and content delivery model. However, their security implications have never been investigated. In this paper, we report the first effort to address this issue, which is made possible by a suite of methodologies, e.g., an automatic pipeline to discover PDN services and their customers, and a PDN analysis framework to test the potential security and privacy risks of these services. Our study has led to the discovery of 3 representative PDN providers, along with 134 websites and 38 mobile apps as their customers. Most of these PDN customers are prominent video streaming services with millions of monthly visits or app downloads (from Google Play). Also found in our study are another 9 top video/live streaming websites with each equipped with a proprietary PDN solution. Most importantly, our analysis on these PDN services has brought to light a series of security risks, which have never been reported before, including free riding of the public PDN services, video segment pollution, exposure of video viewers' IPs to other peers, and resource squatting. All such risks have been studied through controlled experiments and measurements, under the guidance of our institution's IRB. We have responsibly disclosed these security risks to relevant PDN providers, who have acknowledged our findings, and also discussed the avenues to mitigate these risks.

相關內容

Social media platforms use short, highly engaging videos to catch users' attention. While the short-form video feeds popularized by TikTok are rapidly spreading to other platforms, we do not yet understand their impact on cognitive functions. We conducted a between-subjects experiment (N=60) investigating the impact of engaging with TikTok, Twitter, and YouTube while performing a Prospective Memory task (i.e., executing a previously planned action). The study required participants to remember intentions over interruptions. We found that the TikTok condition significantly degraded the users' performance in this task. As none of the other conditions (Twitter, YouTube, no activity) had a similar effect, our results indicate that the combination of short videos and rapid context-switching impairs intention recall and execution. We contribute a quantified understanding of the effect of social media feed format on Prospective Memory and outline consequences for media technology designers to not harm the users' memory and wellbeing.

In this work we propose a simple unsupervised approach for next frame prediction in video. Instead of directly predicting the pixels in a frame given past frames, we predict the transformations needed for generating the next frame in a sequence, given the transformations of the past frames. This leads to sharper results, while using a smaller prediction model. In order to enable a fair comparison between different video frame prediction models, we also propose a new evaluation protocol. We use generated frames as input to a classifier trained with ground truth sequences. This criterion guarantees that models scoring high are those producing sequences which preserve discriminative features, as opposed to merely penalizing any deviation, plausible or not, from the ground truth. Our proposed approach compares favourably against more sophisticated ones on the UCF-101 data set, while also being more efficient in terms of the number of parameters and computational cost.

Trustworthy machine learning is of primary importance to the practical deployment of deep learning models. While state-of-the-art models achieve astonishingly good performance in terms of accuracy, recent literature reveals that their predictive confidence scores unfortunately cannot be trusted: e.g., they are often overconfident when wrong predictions are made, or so even for obvious outliers. In this paper, we introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model, thereby improving its trustworthiness. We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner. Extensive experiments on three trustworthiness-related tasks (misclassification detection, calibration and out-of-distribution detection) across various benchmarks verify the effectiveness of our proposed probing framework.

Recently, large models have achieved the state of the art performances in various fields. In order to support large model training, we have to use distributed training techniques. However, finding an efficient distributed execution plan not only requires fine-grained model statistics, such as memory and computing overhead of each operator but also is a labor-intensive task even for an expert in the field of distributed training. In this paper, we introduce MAP, a compiler built upon PyTorch to implement Memory-aware Automated Parallelization. To profiling operator costs, existing training systems and machine learning pipelines either physically execute with respect to each operand or estimate the memory usage with a scaled input tensor, which are often time-consuming and misleading. Compared with existing methods, MAP provides an easy-to-use symbolic profiler to generate memory and computing statistics of an arbitrary PyTorch model with trivial time cost, so it will boost high productivity for ML developers. In addition, MAP can also seamlessly speed up different static planning tasks on computation graphs for PyTorch, and requires only a few lines of modification to user code to generate a new module instance that has a top-performing distributed execution plan. The source code is publicly available at //github.com/hpcaitech/ColossalAI

Many small to large organizations have adopted the Microservices Architecture (MSA) style to develop and deliver their core businesses. Despite the popularity of MSA in the software industry, there is a limited evidence-based and thorough understanding of the types of issues (e.g., errors, faults, failures, and bugs) that microservices system developers experience, the causes of the issues, and the solutions as potential fixing strategies to address the issues. To ameliorate this gap, we conducted a mixed-methods empirical study that collected data from 2,641 issues from the issue tracking systems of 15 open-source microservices systems on GitHub, 15 interviews, and an online survey completed by 150 practitioners from 42 countries across 6 continents. Our analysis led to comprehensive taxonomies for the issues, causes, and solutions. The findings of this study inform that Technical Debt, Continuous Integration and Delivery, Exception Handling, Service Execution and Communication, and Security are the most dominant issues in microservices systems. Furthermore, General Programming Errors, Missing Features and Artifacts, and Invalid Configuration and Communication are the main causes behind the issues. Finally, we found 177 types of solutions that can be applied to fix the identified issues. Based on our study results, we formulated future research directions that could help researchers and practitioners to engineer emergent and next-generation microservices systems.

"AI as a Service" (AIaaS) is a rapidly growing market, offering various plug-and-play AI services and tools. AIaaS enables its customers (users) - who may lack the expertise, data, and/or resources to develop their own systems - to easily build and integrate AI capabilities into their applications. Yet, it is known that AI systems can encapsulate biases and inequalities that can have societal impact. This paper argues that the context-sensitive nature of fairness is often incompatible with AIaaS' 'one-size-fits-all' approach, leading to issues and tensions. Specifically, we review and systematise the AIaaS space by proposing a taxonomy of AI services based on the levels of autonomy afforded to the user. We then critically examine the different categories of AIaaS, outlining how these services can lead to biases or be otherwise harmful in the context of end-user applications. In doing so, we seek to draw research attention to the challenges of this emerging area.

Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

北京阿比特科技有限公司