亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vertical federated learning is considered, where an active party, having access to true class labels, wishes to build a classification model by utilizing more features from a passive party, which has no access to the labels, to improve the model accuracy. In the prediction phase, with logistic regression as the classification model, several inference attack techniques are proposed that the adversary, i.e., the active party, can employ to reconstruct the passive party's features, regarded as sensitive information. These attacks, which are mainly based on a classical notion of the center of a set, i.e., the Chebyshev center, are shown to be superior to those proposed in the literature. Moreover, several theoretical performance guarantees are provided for the aforementioned attacks. Subsequently, we consider the minimum amount of information that the adversary needs to fully reconstruct the passive party's features. In particular, it is shown that when the passive party holds one feature, and the adversary is only aware of the signs of the parameters involved, it can perfectly reconstruct that feature when the number of predictions is large enough. Next, as a defense mechanism, a privacy-preserving scheme is proposed that worsen the adversary's reconstruction attacks, while preserving the full benefits that VFL brings to the active party. Finally, experimental results demonstrate the effectiveness of the proposed attacks and the privacy-preserving scheme.

相關內容

Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model's prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on //square.ukp-lab.de.

Federated learning (FL) allows participants to collaboratively train machine and deep learning models while protecting data privacy. However, the FL paradigm still presents drawbacks affecting its trustworthiness since malicious participants could launch adversarial attacks against the training process. Related work has studied the robustness of horizontal FL scenarios under different attacks. However, there is a lack of work evaluating the robustness of decentralized vertical FL and comparing it with horizontal FL architectures affected by adversarial attacks. Thus, this work proposes three decentralized FL architectures, one for horizontal and two for vertical scenarios, namely HoriChain, VertiChain, and VertiComb. These architectures present different neural networks and training protocols suitable for horizontal and vertical scenarios. Then, a decentralized, privacy-preserving, and federated use case with non-IID data to classify handwritten digits is deployed to evaluate the performance of the three architectures. Finally, a set of experiments computes and compares the robustness of the proposed architectures when they are affected by different data poisoning based on image watermarks and gradient poisoning adversarial attacks. The experiments show that even though particular configurations of both attacks can destroy the classification performance of the architectures, HoriChain is the most robust one.

Federated learning is vulnerable to poisoning attacks in which malicious clients poison the global model via sending malicious model updates to the server. Existing defenses focus on preventing a small number of malicious clients from poisoning the global model via robust federated learning methods and detecting malicious clients when there are a large number of them. However, it is still an open challenge how to recover the global model from poisoning attacks after the malicious clients are detected. A naive solution is to remove the detected malicious clients and train a new global model from scratch, which incurs large cost that may be intolerable for resource-constrained clients such as smartphones and IoT devices. In this work, we propose FedRecover, which can recover an accurate global model from poisoning attacks with small cost for the clients. Our key idea is that the server estimates the clients' model updates instead of asking the clients to compute and communicate them during the recovery process. In particular, the server stores the global models and clients' model updates in each round, when training the poisoned global model. During the recovery process, the server estimates a client's model update in each round using its stored historical information. Moreover, we further optimize FedRecover to recover a more accurate global model using warm-up, periodic correction, abnormality fixing, and final tuning strategies, in which the server asks the clients to compute and communicate their exact model updates. Theoretically, we show that the global model recovered by FedRecover is close to or the same as that recovered by train-from-scratch under some assumptions. Empirically, our evaluation on four datasets, three federated learning methods, as well as untargeted and targeted poisoning attacks (e.g., backdoor attacks) shows that FedRecover is both accurate and efficient.

Gradient inversion attack enables recovery of training samples from model updates in federated learning (FL) and constitutes a serious threat to data privacy. To mitigate this vulnerability, prior work proposed both principled defenses based on differential privacy, as well as heuristic defenses based on gradient compression as countermeasures. These defenses have so far been very effective, in particular those based on gradient compression that allow the model to maintain high accuracy while greatly reducing the attack's effectiveness. In this work, we argue that such findings do not accurately reflect the privacy risk in FL, and show that existing defenses can be broken by a simple adaptive attack that trains a model using auxiliary data to learn how to invert gradients on both vision and language tasks.

A powerful category of (invisible) data poisoning attacks modify a subset of training examples by small adversarial perturbations to change the prediction of certain test-time data. Existing defense mechanisms are not desirable to deploy in practice, as they often either drastically harm the generalization performance, or are attack-specific, and prohibitively slow to apply. Here, we propose a simple but highly effective approach that unlike existing methods breaks various types of invisible poisoning attacks with the slightest drop in the generalization performance. We make the key observation that attacks introduce local sharp regions of high training loss, which when minimized, results in learning the adversarial perturbations and makes the attack successful. To break poisoning attacks, our key idea is to alleviate the sharp loss regions introduced by poisons. To do so, our approach comprises two components: an optimized friendly noise that is generated to maximally perturb examples without degrading the performance, and a randomly varying noise component. The combination of both components builds a very light-weight but extremely effective defense against the most powerful triggerless targeted and hidden-trigger backdoor poisoning attacks, including Gradient Matching, Bulls-eye Polytope, and Sleeper Agent. We show that our friendly noise is transferable to other architectures, and adaptive attacks cannot break our defense due to its random noise component.

Fair classification aims to stress the classification models to achieve the equality (treatment or prediction quality) among different sensitive groups. However, fair classification can be under the risk of poisoning attacks that deliberately insert malicious training samples to manipulate the trained classifiers' performance. In this work, we study the poisoning scenario where the attacker can insert a small fraction of samples into training data, with arbitrary sensitive attributes as well as other predictive features. We demonstrate that the fairly trained classifiers can be greatly vulnerable to such poisoning attacks, with much worse accuracy & fairness trade-off, even when we apply some of the most effective defenses (originally proposed to defend traditional classification tasks). As countermeasures to defend fair classification tasks, we propose a general and theoretically guaranteed framework which accommodates traditional defense methods to fair classification against poisoning attacks. Through extensive experiments, the results validate that the proposed defense framework obtains better robustness in terms of accuracy and fairness than representative baseline methods.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司