We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $\mathsf{V}$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ players, the success probability of any entanglement-assisted quantum communication protocol for computing $n$ copies of $\mathsf{V}$, whose communication is $o(\log(\mathrm{eff}^*(\mathsf{V},p))\cdot n)$, goes down exponentially in $n$. Here $\mathrm{eff}^*(\mathsf{V}, p)$ is a distributional version of the quantum efficiency or partition bound introduced by Laplante, Lerays and Roland (2014), which is a lower bound on the distributional quantum communication complexity of computing a single copy of $\mathsf{V}$ with respect to $p$. As an application of our result, we show that it is possible to do device-independent quantum key distribution (DIQKD) without the assumption that devices do not leak any information after inputs are provided to them. We analyze the DIQKD protocol given by Jain, Miller and Shi (2017), and show that when the protocol is carried out with devices that are compatible with $n$ copies of the Magic Square game, it is possible to extract $\Omega(n)$ bits of key from it, even in the presence of $O(n)$ bits of leakage. Our security proof is parallel, i.e., the honest parties can enter all their inputs into their devices at once, and works for a leakage model that is arbitrarily interactive, i.e., the devices of the honest parties Alice and Bob can exchange information with each other and with the eavesdropper Eve in any number of rounds, as long as the total number of bits or qubits communicated is bounded.
We introduce a new numerical method for solving time-harmonic acoustic scattering problems. The main focus is on plane waves scattered by smoothly varying material inhomogeneities. The proposed method works for any frequency $\omega$, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: \emph{i)} computation of a suitable incoming plane wavelet with compact support in the propagation direction; \emph{ii)} solving a scattering problem in the time domain for the incoming plane wavelet; \emph{iii)} reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in \emph{ii)}. By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency $\omega$. We also present a new algorithm for computing the Fourier transform in \emph{iii)} that exploits the reduced number of degrees of freedom corresponding to the adapted meshes. Numerical examples demonstrate the advantages of the proposed method and the fact that the method can also be applied with external source terms such as point sources and sound-soft scatterers. The gained efficiency, however, is limited in the presence of trapping modes.
This paper devises a novel lowest-order conforming virtual element method (VEM) for planar linear elasticity with the pure displacement/traction boundary condition. The main trick is to view a generic polygon $K$ as a new one $\widetilde{K}$ with additional vertices consisting of interior points on edges of $K$, so that the discrete admissible space is taken as the $V_1$ type virtual element space related to the partition $\{\widetilde{K}\}$ instead of $\{K\}$. The method is shown to be uniformly convergent with the optimal rates both in $H^1$ and $L^2$ norms with respect to the Lam\'{e} constant $\lambda$. Numerical tests are presented to illustrate the good performance of the proposed VEM and confirm the theoretical results.
Probabilistic zero forcing is a coloring game played on a graph where the goal is to color every vertex blue starting with an initial blue vertex set. As long as the graph is connected, if at least one vertex is blue then eventually all of the vertices will be colored blue. The most studied parameter in probabilistic zero forcing is the expected propagation time starting from a given vertex of $G.$ In this paper we improve on upper bounds for the expected propagation time by Geneson and Hogben and Chan et al. in terms of a graph's order and radius. In particular, for a connected graph $G$ of order $n$ and radius $r,$ we prove the bound $\text{ept}(G) = O(r\log(n/r)).$ We also show using Doob's Optional Stopping Theorem and a combinatorial object known as a cornerstone that $\text{ept}(G) \le n/2 + O(\log n).$ Finally, we derive an explicit lower bound $\text{ept}(G)\ge \log_2 \log_2 n.$
In many iterative optimization methods, fixed-point theory enables the analysis of the convergence rate via the contraction factor associated with the linear approximation of the fixed-point operator. While this factor characterizes the asymptotic linear rate of convergence, it does not explain the non-linear behavior of these algorithms in the non-asymptotic regime. In this letter, we take into account the effect of the first-order approximation error and present a closed-form bound on the convergence in terms of the number of iterations required for the distance between the iterate and the limit point to reach an arbitrarily small fraction of the initial distance. Our bound includes two terms: one corresponds to the number of iterations required for the linearized version of the fixed-point operator and the other corresponds to the overhead associated with the approximation error. With a focus on the convergence in the scalar case, the tightness of the proposed bound is proven for positively quadratic first-order difference equations.
Whether a population of decision-making individuals will reach a state of satisfactory decisions is a fundamental problem in studying collective behaviors. In the framework of evolutionary game theory and by means of potential functions, researchers have established equilibrium convergence under different update rules, including best-response and imitation, by imposing certain conditions on agents' utility functions. Then by using the proposed potential functions, they have been able to control these populations towards some desired equilibrium. Nevertheless, finding a potential function is often daunting, if not near impossible. We introduce the so-called coordinating agent who tends to switch to a decision only if at least another agent has done so. We prove that any population of coordinating agents, a coordinating population, almost surely equilibrates. Apparently, some binary network games that were proven to equilibrate using potential functions are coordinating, and some coloring problems can be solved using this notion. We additionally show that any mixed network of agents following best-response, imitation, or rational imitation, and associated with coordination payoff matrices is coordinating, and hence, equilibrates. As a second contribution, we provide an incentive-based control algorithm that leads coordinating populations to a desired equilibrium. The algorithm iteratively maximizes the ratio of the number of agents choosing the desired decision to the provided incentive. It performs near optimal and as well as specialized algorithms proposed for best-response and imitation; however, it does not require a potential function. Therefore, this control algorithm can be readily applied in general situations where no potential function is yet found for a given decision-making population.
We present a new FPTAS for the Subset Sum Ratio problem, which, given a set of integers, asks for two disjoint subsets such that the ratio of their sums is as close to $1$ as possible. Our scheme makes use of exact and approximate algorithms for the closely related Subset Sum problem, hence any progress over those -- such as the recent improvement due to Bringmann and Nakos [SODA 2021] -- carries over to our FPTAS. Depending on the relationship between the size of the input set $n$ and the error margin $\varepsilon$, we improve upon the best currently known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexity $O(n^4 / \varepsilon)$. In particular, the exponent of $n$ in our proposed scheme may decrease down to $2$, depending on the Subset Sum algorithm used. Furthermore, while the aforementioned state of the art complexity, expressed in the form $O((n + 1 / \varepsilon)^c)$, has constant $c = 5$, our results establish that $c < 5$.
We study entanglement-assisted quantum error-correcting codes (EAQECCs) arising from classical one-point algebraic geometry codes from the Hermitian curve with respect to the Hermitian inner product. Their only unknown parameter is $c$, the number of required maximally entangled quantum states since the Hermitian dual of an AG code is unknown. In this article, we present an efficient algorithmic approach for computing $c$ for this family of EAQECCs. As a result, this algorithm allows us to provide EAQECCs with excellent parameters over any field size.
The field of artificial neural networks is expected to strongly benefit from recent developments of quantum computers. In particular, quantum machine learning, a class of quantum algorithms which exploit qubits for creating trainable neural networks, will provide more power to solve problems such as pattern recognition, clustering and machine learning in general. The building block of feed-forward neural networks consists of one layer of neurons connected to an output neuron that is activated according to an arbitrary activation function. The corresponding learning algorithm goes under the name of Rosenblatt perceptron. Quantum perceptrons with specific activation functions are known, but a general method to realize arbitrary activation functions on a quantum computer is still lacking. Here we fill this gap with a quantum algorithm which is capable to approximate any analytic activation functions to any given order of its power series. Unlike previous proposals providing irreversible measurement--based and simplified activation functions, here we show how to approximate any analytic function to any required accuracy without the need to measure the states encoding the information. Thanks to the generality of this construction, any feed-forward neural network may acquire the universal approximation properties according to Hornik's theorem. Our results recast the science of artificial neural networks in the architecture of gate-model quantum computers.
We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. Such instances include approximating the ground state of spin glasses and MaxCut on Erd\"{o}s-R\'enyi graphs. We also provide an efficient randomized rounding procedure that converts approximately optimal SDP solutions into approximations of the original quadratic optimization problem.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.