亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we induce character-level noise in various forms when fine-tuning BERT to enable zero-shot cross-lingual transfer to unseen dialects and languages. We fine-tune BERT on three sentence-level classification tasks and evaluate our approach on an assortment of unseen dialects and languages. We find that character-level noise can be an extremely effective agent of cross-lingual transfer under certain conditions, while it is not as helpful in others. Specifically, we explore these differences in terms of the nature of the task and the relationships between source and target languages, finding that introduction of character-level noise during fine-tuning is particularly helpful when a task draws on surface level cues and the source-target cross-lingual pair has a relatively high lexical overlap with shorter (i.e., less meaningful) unseen tokens on average.

相關內容

Multilingual large language models (MLLMs) are jointly trained on data from many different languages such that representation of individual languages can benefit from other languages' data. Impressive performance on zero-shot cross-lingual transfer shows that these models are capable of exploiting data from other languages. Yet, it remains unclear to what extent, and under which conditions, languages rely on each other's data. In this study, we use TracIn (Pruthi et al., 2020), a training data attribution (TDA) method, to retrieve the most influential training samples seen during multilingual fine-tuning for a particular test language. This allows us to analyse cross-lingual sharing mechanisms of MLLMs from a new perspective. While previous work studied cross-lingual sharing at the level of model parameters, we present the first approach to study cross-lingual sharing at the data level. We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses. We further study how different fine-tuning languages influence model performance on a given test language and find that they can both reinforce and complement the knowledge acquired from data of the test language itself.

Speaker diarization(SD) is a classic task in speech processing and is crucial in multi-party scenarios such as meetings and conversations. Current mainstream speaker diarization approaches consider acoustic information only, which result in performance degradation when encountering adverse acoustic conditions. In this paper, we propose methods to extract speaker-related information from semantic content in multi-party meetings, which, as we will show, can further benefit speaker diarization. We introduce two sub-tasks, Dialogue Detection and Speaker-Turn Detection, in which we effectively extract speaker information from conversational semantics. We also propose a simple yet effective algorithm to jointly model acoustic and semantic information and obtain speaker-identified texts. Experiments on both AISHELL-4 and AliMeeting datasets show that our method achieves consistent improvements over acoustic-only speaker diarization systems.

Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average since there is no specific knowledge in it. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, which is about Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, which is not available for general LLM, so it is well suited for evaluating methods aimed at improving domain-specific capabilities of LLM. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our model fusion framework outperforms the commonly used LLM with retrieval methods.

How can speech-to-text translation (ST) perform as well as machine translation (MT)? The key point is to bridge the modality gap between speech and text so that useful MT techniques can be applied to ST. Recently, the approach of representing speech with unsupervised discrete units yields a new way to ease the modality problem. This motivates us to propose Discrete Unit Back-translation (DUB) to answer two questions: (1) Is it better to represent speech with discrete units than with continuous features in direct ST? (2) How much benefit can useful MT techniques bring to ST? With DUB, the back-translation technique can successfully be applied on direct ST and obtains an average boost of 5.5 BLEU on MuST-C En-De/Fr/Es. In the low-resource language scenario, our method achieves comparable performance to existing methods that rely on large-scale external data. Code and models are available at //github.com/0nutation/DUB.

In this work, we explore Parameter-Efficient-Learning (PEL) techniques to repurpose a General-Purpose-Speech (GSM) model for Arabic dialect identification (ADI). Specifically, we investigate different setups to incorporate trainable features into a multi-layer encoder-decoder GSM formulation under frozen pre-trained settings. Our architecture includes residual adapter and model reprogramming (input-prompting). We design a token-level label mapping to condition the GSM for Arabic Dialect Identification (ADI). This is challenging due to the high variation in vocabulary and pronunciation among the numerous regional dialects. We achieve new state-of-the-art accuracy on the ADI-17 dataset by vanilla fine-tuning. We further reduce the training budgets with the PEL method, which performs within 1.86% accuracy to fine-tuning using only 2.5% of (extra) network trainable parameters. Our study demonstrates how to identify Arabic dialects using a small dataset and limited computation with open source code and pre-trained models.

We present Pre-trained Machine Reader (PMR), a novel method for retrofitting pre-trained masked language models (MLMs) to pre-trained machine reading comprehension (MRC) models without acquiring labeled data. PMR can resolve the discrepancy between model pre-training and downstream fine-tuning of existing MLMs. To build the proposed PMR, we constructed a large volume of general-purpose and high-quality MRC-style training data by using Wikipedia hyperlinks and designed a Wiki Anchor Extraction task to guide the MRC-style pre-training. Apart from its simplicity, PMR effectively solves extraction tasks, such as Extractive Question Answering and Named Entity Recognition. PMR shows tremendous improvements over existing approaches, especially in low-resource scenarios. When applied to the sequence classification task in the MRC formulation, PMR enables the extraction of high-quality rationales to explain the classification process, thereby providing greater prediction explainability. PMR also has the potential to serve as a unified model for tackling various extraction and classification tasks in the MRC formulation.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs). Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司