亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed computing is known as an emerging and efficient technique to support various intelligent services, such as large-scale machine learning. However, privacy leakage and random delays from straggling servers pose significant challenges. To address these issues, coded computing, a promising solution that combines coding theory with distributed computing, recovers computation tasks with results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, which can adaptively provide accurate or approximated results according to the form of computation functions, so as to suit diverse types of computation tasks. We prove that APCC achieves complete data privacy preservation and demonstrate its optimality in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding. To further alleviate the straggling effect and reduce delay, we integrate hierarchical task partitioning and task cancellation into the coding design of APCC. The corresponding partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. Simulation results show that APCC can reduce task completion delay by a range of 20.3% to 47.5% when compared to other state-of-the-art benchmarks.

相關內容

Measurement-based quantum computing (MBQC) is a promising quantum computing paradigm that performs computation through ``one-way'' measurements on entangled quantum qubits. It is widely used in photonic quantum computing (PQC), where the computation is carried out on photonic cluster states (i.e., a 2-D mesh of entangled photons). In MBQC-based PQC, the cluster state depth (i.e., the length of one-way measurements) to execute a quantum circuit plays an important role in the overall execution time and error. Thus, it is important to reduce the cluster state depth. In this paper, we propose FMCC, a compilation framework that employs dynamic programming to efficiently minimize the cluster state depth. Experimental results on five representative quantum algorithms show that FMCC achieves 53.6%, 60.6%, and 60.0% average depth reductions in small, medium, and large qubit counts compared to the state-of-the-art MBQC compilation frameworks.

Receive generalized spatial modulation (RGSM), as an advanced type of receive spatial modulation (RSM), can be divided into diversity and multiplexing (MUX) schemes according to whether the symbols received by the selected antennas are the same. Recently, reconfigurable intelligent surface (RIS) assisted RSM has attracted much attention due to better reception performance and spectral efficiency. The RIS-aided RGSM (RIS-RGSM) with diversity scheme is realized in this paper via a simple improvement based on the state-of-the-art RIS-aided receive generalized space shift keying (RIS-RGSSK) scheme. To increase the transmission rate, the RIS-RGSM with MUX scheme is proposed in this paper, which adjusts the reflecting phase shifts and on/off states of RIS elements. Theoretical analysis and numerical simulations show that the proposed RIS-RGSM with MUX scheme has better bit error rate (BER) performance than the diversity scheme. Compared to the RIS-RGSSK scheme, the proposed RIS-RGSM scheme can significantly reduce the number of receive antennas while maintaining the transmission rate.

With increasingly more powerful compute capabilities and resources in today's devices, traditionally compute-intensive automatic speech recognition (ASR) has been moving from the cloud to devices to better protect user privacy. However, it is still challenging to implement on-device ASR on resource-constrained devices, such as smartphones, smart wearables, and other small home automation devices. In this paper, we propose a series of model architecture adaptions, neural network graph transformations, and numerical optimizations to fit an advanced Conformer based end-to-end streaming ASR system on resource-constrained devices without accuracy degradation. We achieve over 5.26 times faster than realtime (0.19 RTF) speech recognition on small wearables while minimizing energy consumption and achieving state-of-the-art accuracy. The proposed methods are widely applicable to other transformer-based server-free AI applications. In addition, we provide a complete theory on optimal pre-normalizers that numerically stabilize layer normalization in any Lp-norm using any floating point precision.

Graph matching is a fundamental problem in pattern recognition, with many applications such as software analysis and computational biology. One well-known type of graph matching problem is graph isomorphism, which consists of deciding if two graphs are identical. Despite its usefulness, the properties that one may check using graph isomorphism are rather limited, since it only allows strict equality checks between two graphs. For example, it does not allow one to check complex structural properties such as if the target graph is an arbitrary length sequence followed by an arbitrary size loop. We propose a generalization of graph isomorphism that allows one to check such properties through a declarative specification. This specification is given in the form of a Regular Graph Pattern (ReGaP), a special type of graph, inspired by regular expressions, that may contain wildcard nodes that represent arbitrary structures such as variable-sized sequences or subgraphs. We propose a SAT-based algorithm for checking if a target graph matches a given ReGaP. We also propose a preprocessing technique for improving the performance of the algorithm and evaluate it through an extensive experimental evaluation on benchmarks from the CodeSearchNet dataset.

While coresets have been growing in terms of their application, barring few exceptions, they have mostly been limited to unsupervised settings. We consider supervised classification problems, and non-decomposable evaluation measures in such settings. We show that stratified uniform sampling based coresets have excellent empirical performance that are backed by theoretical guarantees too. We focus on the F1 score and Matthews Correlation Coefficient, two widely used non-decomposable objective functions that are nontrivial to optimize for and show that uniform coresets attain a lower bound for coreset size, and have good empirical performance, comparable with ``smarter'' coreset construction strategies.

Efficiently computing spatio-textual queries has become increasingly important in various applications that need to quickly retrieve geolocated entities associated with textual information, such as in location-based services and social networks. To accelerate such queries, several works have proposed combining spatial and textual indices into hybrid index structures. Recently, the novel idea of replacing traditional indices with ML models has attracted a lot of attention. This includes works on learned spatial indices, where the main challenge is to address the lack of a total ordering among objects in a multidimensional space. In this work, we investigate how to extend this novel type of index design to the case of spatio-textual data. We study different design choices, based on either loose or tight coupling between the spatial and textual part, as well as a hybrid index that combines a traditional and a learned component. We also perform an experimental evaluation using several real-world datasets to assess the potential benefits of using a learned index for evaluating spatio-textual queries.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

Virtualization technologies are the foundation of modern ICT infrastructure, enabling service providers to create dedicated virtual networks (VNs) that can support a wide range of smart city applications. These VNs continuously generate massive amounts of data, necessitating stringent reliability and security requirements. In virtualized network environments, however, multiple VNs may coexist on the same physical infrastructure and, if not properly isolated, may interfere with or provide unauthorized access to one another. The former causes performance degradation, while the latter compromises the security of VNs. Service assurance for infrastructure providers becomes significantly more complicated when a specific VN violates the isolation requirement. In an effort to address the isolation issue, this paper proposes isolation during virtual network embedding (VNE), the procedure of allocating VNs onto physical infrastructure. We define a simple abstracted concept of isolation levels to capture the variations in isolation requirements and then formulate isolation-aware VNE as an optimization problem with resource and isolation constraints. A deep reinforcement learning (DRL)-based VNE algorithm ISO-DRL_VNE, is proposed that considers resource and isolation constraints and is compared to the existing three state-of-the-art algorithms: NodeRank, Global Resource Capacity (GRC), and Mote-Carlo Tree Search (MCTS). Evaluation results show that the ISO-DRL_VNE algorithm outperforms others in acceptance ratio, long-term average revenue, and long-term average revenue-to-cost ratio by 6%, 13%, and 15%.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司