Receive generalized spatial modulation (RGSM), as an advanced type of receive spatial modulation (RSM), can be divided into diversity and multiplexing (MUX) schemes according to whether the symbols received by the selected antennas are the same. Recently, reconfigurable intelligent surface (RIS) assisted RSM has attracted much attention due to better reception performance and spectral efficiency. The RIS-aided RGSM (RIS-RGSM) with diversity scheme is realized in this paper via a simple improvement based on the state-of-the-art RIS-aided receive generalized space shift keying (RIS-RGSSK) scheme. To increase the transmission rate, the RIS-RGSM with MUX scheme is proposed in this paper, which adjusts the reflecting phase shifts and on/off states of RIS elements. Theoretical analysis and numerical simulations show that the proposed RIS-RGSM with MUX scheme has better bit error rate (BER) performance than the diversity scheme. Compared to the RIS-RGSSK scheme, the proposed RIS-RGSM scheme can significantly reduce the number of receive antennas while maintaining the transmission rate.
With the rapid development of large models, the need for data has become increasingly crucial. Especially in 3D object detection, costly manual annotations have hindered further advancements. To reduce the burden of annotation, we study the problem of achieving 3D object detection solely based on 2D annotations. Thanks to advanced 3D reconstruction techniques, it is now feasible to reconstruct the overall static 3D scene. However, extracting precise object-level annotations from the entire scene and generalizing these limited annotations to the entire scene remain challenges. In this paper, we introduce a novel paradigm called BA$^2$-Det, encompassing pseudo label generation and multi-stage generalization. We devise the DoubleClustering algorithm to obtain object clusters from reconstructed scene-level points, and further enhance the model's detection capabilities by developing three stages of generalization: progressing from complete to partial, static to dynamic, and close to distant. Experiments conducted on the large-scale Waymo Open Dataset show that the performance of BA$^2$-Det is on par with the fully-supervised methods using 10% annotations. Additionally, using large raw videos for pretraining,BA$^2$-Det can achieve a 20% relative improvement on the KITTI dataset. The method also has great potential for detecting open-set 3D objects in complex scenes. Project page: //ba2det.site.
A confidence sequence (CS) is a sequence of confidence sets that contains a target parameter of an underlying stochastic process at any time step with high probability. This paper proposes a new approach to constructing CSs for means of bounded multivariate stochastic processes using a general gambling framework, extending the recently established coin toss framework for bounded random processes. The proposed gambling framework provides a general recipe for constructing CSs for categorical and probability-vector-valued observations, as well as for general bounded multidimensional observations through a simple reduction. This paper specifically explores the use of the mixture portfolio, akin to Cover's universal portfolio, in the proposed framework and investigates the properties of the resulting CSs. Simulations demonstrate the tightness of these confidence sequences compared to existing methods. When applied to the sampling without-replacement setting for finite categorical data, it is shown that the resulting CS based on a universal gambling strategy is provably tighter than that of the posterior-prior ratio martingale proposed by Waudby-Smith and Ramdas.
Robotic manipulation of slender objects is challenging, especially when the induced deformations are large and nonlinear. Traditionally, learning-based control approaches, such as imitation learning, have been used to address deformable material manipulation. These approaches lack generality and often suffer critical failure from a simple switch of material, geometric, and/or environmental (e.g., friction) properties. This article tackles a fundamental but difficult deformable manipulation task: forming a predefined fold in paper with only a single manipulator. A sim2real framework combining physically-accurate simulation and machine learning is used to train a deep neural network capable of predicting the external forces induced on the manipulated paper given a grasp position. We frame the problem using scaling analysis, resulting in a control framework robust against material and geometric changes. Path planning is then carried out over the generated ``neural force manifold'' to produce robot manipulation trajectories optimized to prevent sliding, with offline trajectory generation finishing 15$\times$ faster than previous physics-based folding methods. The inference speed of the trained model enables the incorporation of real-time visual feedback to achieve closed-loop model-predictive control. Real-world experiments demonstrate that our framework can greatly improve robotic manipulation performance compared to state-of-the-art folding strategies, even when manipulating paper objects of various materials and shapes.
Recently, a mask-based beamformer with attention-based spatial covariance matrix aggregator (ASA) was proposed, which was demonstrated to track moving sources accurately. However, the deep neural network model used in this algorithm is limited to a specific channel configuration, requiring a different model in case a different channel permutation, channel count, or microphone array geometry is considered. Addressing this limitation, in this paper, we investigate three approaches to improve the robustness of the ASA-based tracking method against such variations: incorporating random channel configurations during the training process, employing the transform-average-concatenate (TAC) method to process multi-channel input features (allowing for any channel count and enabling permutation invariance), and utilizing input features that are robust against variations of the channel configuration. Our experiments, conducted using the CHiME-3 and DEMAND datasets, demonstrate improved robustness against mismatches in channel permutations, channel counts, and microphone array geometries compared to the conventional ASA-based tracking method without compromising performance in matched conditions, suggesting that the mask-based beamformer with ASA integrating the proposed approaches has the potential to track moving sources for arbitrary microphone arrays.
We construct a randomized vector quantizer which has a smaller maximum error compared to all known lattice quantizers with the same entropy for dimensions 5, 6, ..., 48, and also has a smaller mean squared error compared to known lattice quantizers with the same entropy for dimensions 35, ..., 48, in the high resolution limit. Moreover, our randomized quantizer has a desirable property that the quantization error is always uniform over the ball and independent of the input. Our construction is based on applying rejection sampling on universal quantization, which allows us to shape the error distribution to be any continuous distribution, not only uniform distributions over basic cells of a lattice as in conventional dithered quantization. We also characterize the high SNR limit of one-shot channel simulation for any additive noise channel under a mild assumption (e.g., the AWGN channel), up to an additive constant of 1.45 bits.
Adversarial Malware Generation (AMG), the gen- eration of adversarial malware variants to strengthen Deep Learning (DL)-based malware detectors has emerged as a crucial tool in the development of proactive cyberdefense. However, the majority of extant works offer subtle perturbations or additions to executable files and do not explore full-file obfuscation. In this study, we show that an open-source encryption tool coupled with a Reinforcement Learning (RL) framework can successfully obfuscate malware to evade state-of-the-art malware detection engines and outperform techniques that use advanced modification methods. Our results show that the proposed method improves the evasion rate from 27%-49% compared to widely- used state-of-the-art reinforcement learning-based methods.
Biometric authentication systems are crucial for security, but developing them involves various complexities, including privacy, security, and achieving high accuracy without directly storing pure biometric data in storage. We introduce an innovative image distortion technique that makes facial images unrecognizable to the eye but still identifiable by any custom embedding neural network model. Using the proposed approach, we test the reliability of biometric recognition networks by determining the maximum image distortion that does not change the predicted identity. Through experiments on MNIST and LFW datasets, we assess its effectiveness and compare it based on the traditional comparison metrics.
Document-level translation models are usually evaluated using general metrics such as BLEU, which are not informative about the benefits of context. Current work on context-aware evaluation, such as contrastive methods, only measure translation accuracy on words that need context for disambiguation. Such measures cannot reveal whether the translation model uses the correct supporting context. We propose to complement accuracy-based evaluation with measures of context utilization. We find that perturbation-based analysis (comparing models' performance when provided with correct versus random context) is an effective measure of overall context utilization. For a finer-grained phenomenon-specific evaluation, we propose to measure how much the supporting context contributes to handling context-dependent discourse phenomena. We show that automatically-annotated supporting context gives similar conclusions to human-annotated context and can be used as alternative for cases where human annotations are not available. Finally, we highlight the importance of using discourse-rich datasets when assessing context utilization.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.