This paper presents a theoretical analysis and practical approach to the moral responsibilities when developing AI systems for non-military applications that may nonetheless be used for conflict applications. We argue that AI represents a form of crossover technology that is different from previous historical examples of dual- or multi-use technology as it has a multiplicative effect across other technologies. As a result, existing analyses of ethical responsibilities around dual-use technologies do not necessarily work for AI systems. We instead argue that stakeholders involved in the AI system lifecycle are morally responsible for uses of their systems that are reasonably foreseeable. The core idea is that an agent's moral responsibility for some action is not necessarily determined by their intentions alone; we must also consider what the agent could reasonably have foreseen to be potential outcomes of their action, such as the potential use of a system in conflict even when it is not designed for that. In particular, we contend that it is reasonably foreseeable that: (1) civilian AI systems will be applied to active conflict, including conflict support activities, (2) the use of civilian AI systems in conflict will impact applications of the law of armed conflict, and (3) crossover AI technology will be applied to conflicts that fall short of armed conflict. Given these reasonably foreseeably outcomes, we present three technically feasible actions that developers of civilian AIs can take to potentially mitigate their moral responsibility: (a) establishing systematic approaches to multi-perspective capability testing, (b) integrating digital watermarking in model weight matrices, and (c) utilizing monitoring and reporting mechanisms for conflict-related AI applications.
Machine learning-based reliability analysis methods have shown great advancements for their computational efficiency and accuracy. Recently, many efficient learning strategies have been proposed to enhance the computational performance. However, few of them explores the theoretical optimal learning strategy. In this article, we propose several theorems that facilitates such exploration. Specifically, cases that considering and neglecting the correlations among the candidate design samples are well elaborated. Moreover, we prove that the well-known U learning function can be reformulated to the optimal learning function for the case neglecting the Kriging correlation. In addition, the theoretical optimal learning strategy for sequential multiple training samples enrichment is also mathematically explored through the Bayesian estimate with the corresponding lost functions. Simulation results show that the optimal learning strategy considering the Kriging correlation works better than that neglecting the Kriging correlation and other state-of-the art learning functions from the literatures in terms of the reduction of number of evaluations of performance function. However, the implementation needs to investigate very large computational resource.
Compared to other techniques, particle swarm optimization is more frequently utilized because of its ease of use and low variability. However, it is complicated to find the best possible solution in the search space in large-scale optimization problems. Moreover, changing algorithm variables does not influence algorithm convergence much. The PSO algorithm can be combined with other algorithms. It can use their advantages and operators to solve this problem. Therefore, this paper proposes the onlooker multi-parent crossover discrete particle swarm optimization (OMPCDPSO). To improve the efficiency of the DPSO algorithm, we utilized multi-parent crossover on the best solutions. We performed an independent and intensive neighborhood search using the onlooker bees of the bee algorithm. The algorithm uses onlooker bees and crossover. They do local search (exploitation) and global search (exploration). Each of these searches is among the best solutions (employed bees). The proposed algorithm was tested on the allocation problem, which is an NP-hard optimization problem. Also, we used two types of simulated data. They were used to test the scalability and complexity of the better algorithm. Also, fourteen 2D test functions and thirteen 30D test functions were used. They also used twenty IEEE CEC2005 benchmark functions to test the efficiency of OMPCDPSO. Also, to test OMPCDPSO's performance, we compared it to four new binary optimization algorithms and three classic ones. The results show that the OMPCDPSO version had high capability. It performed better than other algorithms. The developed algorithm in this research (OMCDPSO) in 36 test functions out of 47 (76.60%) is better than other algorithms. The Onlooker bees and multi-parent operators significantly impact the algorithm's performance.
In this paper, we propose two algorithms for a hybrid construction of all $n\times n$ MDS and involutory MDS matrices over a finite field $\mathbb{F}_{p^m}$, respectively. The proposed algorithms effectively narrow down the search space to identify $(n-1) \times (n-1)$ MDS matrices, facilitating the generation of all $n \times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. To the best of our knowledge, existing literature lacks methods for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. In our approach, we introduce a representative matrix form for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. The determination of these representative MDS matrices involves searching through all $(n-1)\times (n-1)$ MDS matrices over $\mathbb{F}_{p^m}$. Our contributions extend to proving that the count of all $3\times 3$ MDS matrices over $\mathbb{F}_{2^m}$ is precisely $(2^m-1)^5(2^m-2)(2^m-3)(2^{2m}-9\cdot 2^m+21)$. Furthermore, we explicitly provide the count of all $4\times 4$ MDS and involutory MDS matrices over $\mathbb{F}_{2^m}$ for $m=2, 3, 4$.
This paper proposes a methodology for constructing such corpora of child directed speech (CDS) paired with sentential logical forms, and uses this method to create two such corpora, in English and Hebrew. The approach enforces a cross-linguistically consistent representation, building on recent advances in dependency representation and semantic parsing. Specifically, the approach involves two steps. First, we annotate the corpora using the Universal Dependencies (UD) scheme for syntactic annotation, which has been developed to apply consistently to a wide variety of domains and typologically diverse languages. Next, we further annotate these data by applying an automatic method for transducing sentential logical forms (LFs) from UD structures. The UD and LF representations have complementary strengths: UD structures are language-neutral and support consistent and reliable annotation by multiple annotators, whereas LFs are neutral as to their syntactic derivation and transparently encode semantic relations. Using this approach, we provide syntactic and semantic annotation for two corpora from CHILDES: Brown's Adam corpus (English; we annotate ~80% of its child-directed utterances), all child-directed utterances from Berman's Hagar corpus (Hebrew). We verify the quality of the UD annotation using an inter-annotator agreement study, and manually evaluate the transduced meaning representations. We then demonstrate the utility of the compiled corpora through (1) a longitudinal corpus study of the prevalence of different syntactic and semantic phenomena in the CDS, and (2) applying an existing computational model of language acquisition to the two corpora and briefly comparing the results across languages.
The recent paper (IEEE Trans. IT 69, 1680) introduced an analytical method for calculating the channel capacity without the need for iteration. This method has certain limitations that restrict its applicability. Furthermore, the paper does not provide an explanation as to why the channel capacity can be solved analytically in this particular case. In order to broaden the scope of this method and address its limitations, we turn our attention to the reverse em-problem, proposed by Toyota (Information Geometry, 3, 1355 (2020)). This reverse em-problem involves iteratively applying the inverse map of the em iteration to calculate the channel capacity, which represents the maximum mutual information. However, several open problems remained unresolved in Toyota's work. To overcome these challenges, we formulate the reverse em-problem based on Bregman divergence and provide solutions to these open problems. Building upon these results, we transform the reverse em-problem into em-problems and derive a non-iterative formula for the reverse em-problem. This formula can be viewed as a generalization of the aforementioned analytical calculation method. Importantly, this derivation sheds light on the information geometrical structure underlying this special case. By effectively addressing the limitations of the previous analytical method and providing a deeper understanding of the underlying information geometrical structure, our work significantly expands the applicability of the proposed method for calculating the channel capacity without iteration.
In this paper, we present a~generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued \L{}ukasiewicz logics. To this end, we provide proof systems that augment Avron's Frege system for \L{}ukasiewicz three-valued logic with nested and general versions of the disjunction elimination rule, respectively. For these systems we provide upper bounds on speed-ups w.r.t.\ both the number of steps in proofs and the length of proofs. We also consider Tamminga's natural deduction and Avron's hypersequent calculus for 3-valued \L{}ukasiewicz logic and generalise our results considering the disjunction elimination rule to all finite-valued \L{}ukasiewicz logics.
This manuscript provides a comprehensive review of the Maximum Clique Problem, a computational problem that involves finding subsets of vertices in a graph that are all pairwise adjacent to each other. The manuscript covers in a simple way classical algorithms for solving the problem and includes a review of recent developments in graph neural networks and quantum algorithms. The review concludes with benchmarks for testing classical as well as new learning, and quantum algorithms.
In this paper, we explore the susceptibility of the Q-learning algorithm (a classical and widely used reinforcement learning method) to strategic manipulation of sophisticated opponents in games. We quantify how much a strategically sophisticated agent can exploit a naive Q-learner if she knows the opponent's Q-learning algorithm. To this end, we formulate the strategic actor's problem as a Markov decision process (with a continuum state space encompassing all possible Q-values) as if the Q-learning algorithm is the underlying dynamical system. We also present a quantization-based approximation scheme to tackle the continuum state space and analyze its performance both analytically and numerically.
Application of Neural Networks to river hydraulics is fledgling, despite the field suffering from data scarcity, a challenge for machine learning techniques. Consequently, many purely data-driven Neural Networks proved to lack predictive capabilities. In this work, we propose to mitigate such problem by introducing physical information into the training phase. The idea is borrowed from Physics-Informed Neural Networks which have been recently proposed in other contexts. Physics-Informed Neural Networks embed physical information in the form of the residual of the Partial Differential Equations (PDEs) governing the phenomenon and, as such, are conceived as neural solvers, i.e. an alternative to traditional numerical solvers. Such approach is seldom suitable for environmental hydraulics, where epistemic uncertainties are large, and computing residuals of PDEs exhibits difficulties similar to those faced by classical numerical methods. Instead, we envisaged the employment of Neural Networks as neural operators, featuring physical constraints formulated without resorting to PDEs. The proposed novel methodology shares similarities with data augmentation and regularization. We show that incorporating such soft physical information can improve predictive capabilities.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.