亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks. Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly. Despite the empirical success, general theoretical guarantees of convergence on this method remain an open question. This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time. In particular, we prove that under certain sufficient conditions and for both IID and non-IID data, these algorithms converge to a stationary point of standard FL for general smooth cost functions. Moreover, we introduce the concept of minimum coverage index, together with model reduction noise, which will determine the convergence of heterogeneous federated learning, and therefore we advocate for a holistic approach that considers both factors to enhance the efficiency of heterogeneous federated learning.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 閾值 · 性能度量 · Performer · 似然 ·
2023 年 12 月 14 日

Anomalous sound detection (ASD) systems are usually compared by using threshold-independent performance measures such as AUC-ROC. However, for practical applications a decision threshold is needed to decide whether a given test sample is normal or anomalous. Estimating such a threshold is highly non-trivial in a semi-supervised setting where only normal training samples are available. In this work, F1-EV a novel threshold-independent performance measure for ASD systems that also includes the likelihood of estimating a good decision threshold is proposed and motivated using specific toy examples. In experimental evaluations, multiple performance measures are evaluated for all systems submitted to the ASD task of the DCASE Challenge 2023. It is shown that F1-EV is strongly correlated with AUC-ROC while having a significantly stronger correlation with the F1-score obtained with estimated and optimal decision thresholds than AUC-ROC.

3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.

To segment a signal into blocks to be analyzed, few-shot keyword spotting (KWS) systems often utilize a sliding window of fixed size. Because of the varying lengths of different keywords or their spoken instances, choosing the right window size is a problem: A window should be long enough to contain all necessary information needed to recognize a keyword but a longer window may contain irrelevant information such as multiple words or noise and thus makes it difficult to reliably detect on- and offsets of keywords. We propose TACos, a novel angular margin loss for deriving two-dimensional embeddings that retain temporal properties of the underlying speech signal. In experiments conducted on KWS-DailyTalk, a few-shot KWS dataset presented in this work, using these embeddings as templates for dynamic time warping is shown to outperform using other representations or a sliding window and that using time-reversed segments of the keywords during training improves the performance.

The global multi-object tracking (MOT) system can consider interaction, occlusion, and other ``visual blur'' scenarios to ensure effective object tracking in long videos. Among them, graph-based tracking-by-detection paradigms achieve surprising performance. However, their fully-connected nature poses storage space requirements that challenge algorithm handling long videos. Currently, commonly used methods are still generated trajectories by building one-forward associations across frames. Such matches produced under the guidance of first-order similarity information may not be optimal from a longer-time perspective. Moreover, they often lack an end-to-end scheme for correcting mismatches. This paper proposes the Composite Node Message Passing Network (CoNo-Link), a multi-scene generalized framework for modeling ultra-long frames information for association. CoNo-Link's solution is a low-storage overhead method for building constrained connected graphs. In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction, improving the graph neural network's feature representation capability. Specifically, we formulate the graph-building problem as a top-k selection task for some reliable objects or trajectories. Our model can learn better predictions on longer-time scales by adding composite nodes. As a result, our method outperforms the state-of-the-art in several commonly used datasets.

Predictive Process Monitoring (PPM) aims at leveraging historic process execution data to predict how ongoing executions will continue up to their completion. In recent years, PPM techniques for the prediction of the next activities have matured significantly, mainly thanks to the use of Neural Networks (NNs) as a predictor. While their performance is difficult to beat in the general case, there are specific situations where background process knowledge can be helpful. Such knowledge can be leveraged for improving the quality of predictions for exceptional process executions or when the process changes due to a concept drift. In this paper, we present a Symbolic[Neuro] system that leverages background knowledge expressed in terms of a procedural process model to offset the under-sampling in the training data. More specifically, we make predictions using NNs with attention mechanism, an emerging technology in the NN field. The system has been tested on several real-life logs showing an improvement in the performance of the prediction task.

Financial networks raise a significant computational challenge in identifying insolvent firms and evaluating their exposure to systemic risk. This task, known as the clearing problem, is computationally tractable when dealing with simple debt contracts. However under the presence of certain derivatives called credit default swaps (CDSes) the clearing problem is $\textsf{FIXP}$-complete. Existing techniques only show $\textsf{PPAD}$-hardness for finding an $\epsilon$-solution for the clearing problem with CDSes within an unspecified small range for $\epsilon$. We present significant progress in both facets of the clearing problem: (i) intractability of approximate solutions; (ii) algorithms and heuristics for computable solutions. Leveraging $\textsf{Pure-Circuit}$ (FOCS'22), we provide the first explicit inapproximability bound for the clearing problem involving CDSes. Our primal contribution is a reduction from $\textsf{Pure-Circuit}$ which establishes that finding approximate solutions is $\textsf{PPAD}$-hard within a range of roughly 5%. To alleviate the complexity of the clearing problem, we identify two meaningful restrictions of the class of financial networks motivated by regulations: (i) the presence of a central clearing authority; and (ii) the restriction to covered CDSes. We provide the following results: (i.) The $\textsf{PPAD}$-hardness of approximation persists when central clearing authorities are introduced; (ii.) An optimisation-based method for solving the clearing problem with central clearing authorities; (iii.) A polynomial-time algorithm when the two restrictions hold simultaneously.

Large Language Models (LLMs) have gained considerable traction within the Software Engineering (SE) community, impacting various SE tasks from code completion to test generation, from program repair to code summarization. Despite their promise, researchers must still be careful as numerous intricate factors can influence the outcomes of experiments involving LLMs. This paper initiates an open discussion on potential threats to the validity of LLM-based research including issues such as closed-source models, possible data leakage between LLM training data and research evaluation, and the reproducibility of LLM-based findings. In response, this paper proposes a set of guidelines tailored for SE researchers and Language Model (LM) providers to mitigate these concerns. The implications of the guidelines are illustrated using existing good practices followed by LLM providers and a practical example for SE researchers in the context of test case generation.

Wireframing is a critical step in the UI design process. Mid-fidelity wireframes offer more impactful and engaging visuals compared to low-fidelity versions. However, their creation can be time-consuming and labor-intensive, requiring the addition of actual content and semantic icons. In this paper, we introduce a novel solution WireGen, to automatically generate mid-fidelity wireframes with just a brief design intent description using the generative Large Language Models (LLMs). Our experiments demonstrate the effectiveness of WireGen in producing 77.5% significantly better wireframes, outperforming two widely-used in-context learning baselines. A user study with 5 designers further validates its real-world usefulness, highlighting its potential value to enhance UI design process.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司