Anomalous sound detection (ASD) systems are usually compared by using threshold-independent performance measures such as AUC-ROC. However, for practical applications a decision threshold is needed to decide whether a given test sample is normal or anomalous. Estimating such a threshold is highly non-trivial in a semi-supervised setting where only normal training samples are available. In this work, F1-EV a novel threshold-independent performance measure for ASD systems that also includes the likelihood of estimating a good decision threshold is proposed and motivated using specific toy examples. In experimental evaluations, multiple performance measures are evaluated for all systems submitted to the ASD task of the DCASE Challenge 2023. It is shown that F1-EV is strongly correlated with AUC-ROC while having a significantly stronger correlation with the F1-score obtained with estimated and optimal decision thresholds than AUC-ROC.
Extremely large aperture arrays can enable unprecedented spatial multiplexing in beyond 5G systems due to their extremely narrow beamfocusing capabilities. However, acquiring the spatial correlation matrix to enable efficient channel estimation is a complex task due to the vast number of antenna dimensions. Recently, a new estimation method called the "reduced-subspace least squares (RS-LS) estimator" has been proposed for densely packed arrays. This method relies solely on the geometry of the array to limit the estimation resources. In this paper, we address a gap in the existing literature by deriving the average spectral efficiency for a certain distribution of user equipments (UEs) and a lower bound on it when using the RS-LS estimator. This bound is determined by the channel gain and the statistics of the normalized spatial correlation matrices of potential UEs but, importantly, does not require knowledge of a specific UE's spatial correlation matrix. We establish that there exists a pilot length that maximizes this expression. Additionally, we derive an approximate expression for the optimal pilot length under low signal-to-noise ratio (SNR) conditions. Simulation results validate the tightness of the derived lower bound and the effectiveness of using the optimized pilot length.
The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.
Combining the strengths of many existing predictors to obtain a Mixture of Experts which is superior to its individual components is an effective way to improve the performance without having to develop new architectures or train a model from scratch. However, surprisingly, we find that na\"ively combining expert object detectors in a similar way to Deep Ensembles, can often lead to degraded performance. We identify that the primary cause of this issue is that the predictions of the experts do not match their performance, a term referred to as miscalibration. Consequently, the most confident detector dominates the final predictions, preventing the mixture from leveraging all the predictions from the experts appropriately. To address this, when constructing the Mixture of Experts, we propose to combine their predictions in a manner which reflects the individual performance of the experts; an objective we achieve by first calibrating the predictions before filtering and refining them. We term this approach the Mixture of Calibrated Experts and demonstrate its effectiveness through extensive experiments on 5 different detection tasks using a variety of detectors, showing that it: (i) improves object detectors on COCO and instance segmentation methods on LVIS by up to $\sim 2.5$ AP; (ii) reaches state-of-the-art on COCO test-dev with $65.1$ AP and on DOTA with $82.62$ $\mathrm{AP_{50}}$; (iii) outperforms single models consistently on recent detection tasks such as Open Vocabulary Object Detection.
Parity reasoning is challenging for Conflict-Driven Clause Learning (CDCL) SAT solvers. This has been observed even for simple formulas encoding two contradictory parity constraints with different variable orders (Chew and Heule 2020). We provide an analytical explanation for their hardness by showing that they require exponential resolution refutations with high probability when the variable order is chosen at random. We obtain this result by proving that these formulas, which are known to be Tseitin formulas, have Tseitin graphs of linear treewidth with high probability. Since such Tseitin formulas require exponential resolution proofs, our result follows. We generalize this argument to a new class of formulas that capture a basic form of parity reasoning involving a sum of two random parity constraints with random orders. Even when the variable order for the sum is chosen favorably, these formulas remain hard for resolution. In contrast, we prove that they have short DRAT refutations. We show experimentally that the running time of CDCL SAT solvers on both classes of formulas grows exponentially with their treewidth.
In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.
Developing Text-to-Speech (TTS) systems that can synthesize natural breath is essential for human-like voice agents but requires extensive manual annotation of breath positions in training data. To this end, we propose a self-training method for training a breath detection model that can automatically detect breath positions in speech. Our method trains the model using a large speech corpus and involves: 1) annotation of limited breath sounds utilizing a rule-based approach, and 2) iterative augmentation of these annotations through pseudo-labeling based on the model's predictions. Our detection model employs Conformer blocks with down-/up-sampling layers, enabling accurate frame-wise breath detection. We investigate its effectiveness in multi-speaker TTS using text transcripts with detected breath marks. The results indicate that using our proposed model for breath detection and breath mark insertion synthesizes breath-contained speech more naturally than a baseline model.
We present a new methodology for handling AI errors by introducing weakly supervised AI error correctors with a priori performance guarantees. These AI correctors are auxiliary maps whose role is to moderate the decisions of some previously constructed underlying classifier by either approving or rejecting its decisions. The rejection of a decision can be used as a signal to suggest abstaining from making a decision. A key technical focus of the work is in providing performance guarantees for these new AI correctors through bounds on the probabilities of incorrect decisions. These bounds are distribution agnostic and do not rely on assumptions on the data dimension. Our empirical example illustrates how the framework can be applied to improve the performance of an image classifier in a challenging real-world task where training data are scarce.
Full-duplex (FD) wireless can significantly enhance spectrum efficiency but requires effective self-interference (SI) cancellers. RF SI cancellation (SIC) via frequency-domain equalization (FDE), where bandpass filters channelize the SI, is suited for integrated circuits (ICs). In this paper, we explore the limits and higher layer challenges associated with using such cancellers. We evaluate the performance of a custom FDE-based canceller using two testbeds; one with mobile FD radios and the other with upgraded, static FD radios in the PAWR COSMOS testbed. The latter is a lasting artifact for the research community, alongside a dataset containing baseband waveforms captured on the COSMOS FD radios, facilitating FD-related experimentation at the higher networking layers. We evaluate the performance of the FDE-based FD radios in both testbeds, with experiments showing 95 dB overall achieved SIC (52 dB from RF SIC) across 20 MHz bandwidth, and an average link-level FD rate gain of 1.87x. We also conduct experiments in (i) uplink-downlink networks with inter-user interference, and (ii) heterogeneous networks with half-duplex and FD users. The experimental FD gains in the two types of networks depend on the users' SNR values and the number of FD users, and are 1.14x-1.25x and 1.25x-1.73x, respectively, confirming previous analytical results.
Recent advancements have significantly augmented the reasoning capabilities of Large Language Models (LLMs) through various methodologies, especially chain-of-thought (CoT) reasoning. However, previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors.In this paper, we propose Deductive Beam Search (DBS), which seamlessly integrates CoT and deductive reasoning with step-wise beam search for LLMs. Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation. Furthermore, we introduce a scalable and labor-free data construction method to amplify our model's verification capabilities. Extensive experiments demonstrate that our approach significantly enhances the base performance of LLMs of various scales (7B, 13B, 70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning genres, including arithmetic, commonsense, and symbolic. Moreover, our analysis proves DBS's capability of detecting diverse and subtle reasoning errors and robustness on different model scales.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.