亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Population protocols model information spreading and computation in network systems where pairwise node exchanges are determined by an external random scheduler and nodes have small memory. Most of the population protocols in the literature assume that the participating $n$ nodes are honest. Such an assumption may not be, however, accurate for large-scale systems of small devices. Hence, in this work, we study population protocols in a setting where up to $f$ nodes can be Byzantine. We examine the majority (binary) consensus problem against different levels of adversary strengths, ranging from the Full Byzantine adversary that has complete knowledge of all the node states to the Weak Content-Oblivious Byzantine adversary that has only knowledge about which exchanges take place. We also take into account Dynamic vs Static node corruption by the adversary. We give lower bounds that require any algorithm solving the majority consensus to have initial difference $d = \Omega(f + 1)$ for the tally between the two proposed values, which holds for both the Full Static and Weak Dynamic adversaries. We then present an algorithm that solves the majority consensus problem and tolerates $f \leq n / c$ Byzantine nodes, for some constant $c>0$, with $d = \Omega(f + \sqrt{n \log n})$ and $O(\log^3 n)$ parallel time steps, using $O(\log^3 n)$ states per node. We also give an alternative algorithm, with the same asymptotic performance, for $d = \Omega(\min\{f \log^2 n + 1,n\})$. Finally, we combine both algorithms into one using a new robust distributed common coin. The only other known previous work on Byzantine-resilient population protocols tolerates up to $f = o(\sqrt n)$ faulty nodes and was analyzed against a Static adversary; hence, our protocols significantly improve fault-tolerance by an $\omega(\sqrt n)$ factor and all of them work correctly against a stronger Dynamic adversary.

相關內容

Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distribution, but they often face scalability and expressiveness challenges. In this work, we propose a new method that effectively combines the strengths of deep learning with CMEs in order to address these challenges. Specifically, our approach leverages the end-to-end neural network (NN) optimization framework using a kernel-based objective. This design circumvents the computationally expensive Gram matrix inversion required by current CME methods. To further enhance performance, we provide efficient strategies to optimize the remaining kernel hyperparameters. In conditional density estimation tasks, our NN-CME hybrid achieves competitive performance and often surpasses existing deep learning-based methods. Lastly, we showcase its remarkable versatility by seamlessly integrating it into reinforcement learning (RL) contexts. Building on Q-learning, our approach naturally leads to a new variant of distributional RL methods, which demonstrates consistent effectiveness across different environments.

Recently, centralized receding horizon online multi-robot coverage path planning algorithms have shown remarkable scalability in thoroughly exploring large, complex, unknown workspaces with many robots. In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute, and subsequently, when the robots with new or outstanding paths execute to reach respective goals, path planning does not occur for those robots yet to get new paths, leading to wastage of both the robotic and the computation resources. As a remedy, we propose a centralized algorithm that is not horizon-based. It plans paths at any time for a subset of robots with no paths, i.e., who have reached their previously assigned goals, while the rest execute their outstanding paths, thereby enabling concurrent planning and execution. We formally prove that the proposed algorithm ensures complete coverage of an unknown workspace and analyze its time complexity. To demonstrate scalability, we evaluate our algorithm to cover eight large $2$D grid benchmark workspaces with up to 512 aerial and ground robots, respectively. A comparison with a state-of-the-art horizon-based algorithm shows its superiority in completing the coverage with up to 1.6x speedup. For validation, we perform ROS + Gazebo simulations in six 2D grid benchmark workspaces with 10 quadcopters and TurtleBots, respectively. We also successfully conducted one outdoor experiment with three quadcopters and one indoor with two TurtleBots.

This paper develops an approach to language identification in which the set of languages considered by the model depends on the geographic origin of the text in question. Given that many digital corpora can be geo-referenced at the country level, this paper formulates 16 region-specific models, each of which contains the languages expected to appear in countries within that region. These regional models also each include 31 widely-spoken international languages in order to ensure coverage of these linguae francae regardless of location. An upstream evaluation using traditional language identification testing data shows an improvement in f-score ranging from 1.7 points (Southeast Asia) to as much as 10.4 points (North Africa). A downstream evaluation on social media data shows that this improved performance has a significant impact on the language labels which are applied to large real-world corpora. The result is a highly-accurate model that covers 916 languages at a sample size of 50 characters, the performance improved by incorporating geographic information into the model.

Byzantine agreement enables n processes to agree on a common L-bit value, despite t > 0 arbitrary failures. A long line of work has been dedicated to improving the worst-case bit complexity of Byzantine agreement in synchrony. This has culminated in COOL, an error-free (deterministically secure against a computationally unbounded adversary) algorithm that achieves a near-optimal bit complexity of O(nL + n^2 log n). COOL satisfies strong validity: if all correct processes propose the same value, only that value can be decided. Thus, whenever correct processes do not a priori agree, COOL might decide on "bottom", thus limiting its application in today's state machine replication (SMR) and blockchain protocols. In this work, we focus on the aforementioned limitation. Can we design an error-free near-optimal Byzantine agreement algorithm applicable in today's SMR and blockchain protocols? Can we design an error-free near-optimal agreement algorithm with external validity (a.k.a. validated agreement) stipulating that only values valid according to a predetermined predicate can be decided? This paper answers the question affirmatively. Namely, we present EXT, an error-free synchronous Byzantine agreement algorithm that satisfies external (along with strong) validity while exchanging O(n log n L + n^2 log n) bits in the worst case. Importantly, EXT is optimally resilient (tolerates t < n / 3 failures) and terminates in optimal O(n) rounds. Perhaps surprisingly, we construct EXT by exploiting existing concepts: (1) the recursive framework proposed by Berman, Garay and Perry and Coan and Welch and recently restated by Momose and Ren, (2) the aforementioned COOL algorithm introduced by Chen, and (3) the data dissemination primitive introduced by Das, Xiang and Ren.

Microcanonical gradient descent is a sampling procedure for energy-based models allowing for efficient sampling of distributions in high dimension. It works by transporting samples from a high-entropy distribution, such as Gaussian white noise, to a low-energy region using gradient descent. We put this model in the framework of normalizing flows, showing how it can often overfit by losing an unnecessary amount of entropy in the descent. As a remedy, we propose a mean-field microcanonical gradient descent that samples several weakly coupled data points simultaneously, allowing for better control of the entropy loss while paying little in terms of likelihood fit. We study these models in the context of financial time series, illustrating the improvements on both synthetic and real data.

This paper addresses point-to-point packet routing in undirected networks, which is the most important communication primitive in most networks. The main result proves the existence of routing tables that guarantee a polylog-competitive completion-time $\textbf{deterministically}$: in any undirected network, it is possible to give each node simple stateless deterministic local forwarding rules, such that, any adversarially chosen set of packets are delivered as fast as possible, up to polylog factors. All previous routing strategies crucially required randomization for both route selection and packet scheduling. The core technical contribution of this paper is a new local packet scheduling result of independent interest. This scheduling strategy integrates well with recent sparse semi-oblivious path selection strategies. Such strategies deterministically select not one but several candidate paths for each packet and require a global coordinator to select a single good path from those candidates for each packet. Another challenge is that, even if a single path is selected for each packet, no strategy for scheduling packets along low-congestion paths that is both local and deterministic is known. Our novel scheduling strategy utilizes the fact that every semi-oblivious routing strategy uses only a small (polynomial) subset of candidate routes. It overcomes the issue of global coordination by furthermore being provably robust to adversarial noise. This avoids the issue of having to choose a single path per packet because congestion caused by ineffective candidate paths can be treated as noise. Our results imply the first deterministic universally-optimal algorithms in the distributed supported-CONGEST model for many important global distributed tasks, including computing minimum spanning trees, approximate shortest paths, and part-wise aggregates.

We introduce a new algorithm for solving unconstrained discrete-time optimal control problems. Our method follows a direct multiple shooting approach, and consists of applying the SQP method together with an $\ell_2$ augmented Lagrangian primal-dual merit function. We use the LQR algorithm to efficiently solve the primal component of the Newton-KKT system, and use a dual LQR backward pass to solve its dual component. We also present a new parallel algorithm for solving the dual component of the Newton-KKT system in $O(\log(N))$ parallel time, where $N$ is the number of stages. Combining it with (S\"{a}rkk\"{a} and Garc\'{i}a-Fern\'{a}ndez, 2023), we are able to solve the full Newton-KKT system in $O(\log(N))$ parallel time. The remaining parts of our method have constant parallel time complexity per iteration. Therefore, this paper provides, for the first time, a practical, highly parallelizable (for example, with a GPU) method for solving nonlinear discrete-time optimal control problems. As our algorithm is a specialization of NPSQP (Gill et al. 1992), it inherits its generic properties, including global convergence, fast local convergence, and the lack of need for second order corrections or dimension expansions, improving on existing direct multiple shooting approaches such as acados (Verschueren et al. 2022), ALTRO (Howell et al. 2019), GNMS (Giftthaler et al. 2018), FATROP (Vanroye et al. 2023), and FDDP (Mastalli et al. 2020).

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司