亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The $k$-Server Problem covers plenty of resource allocation scenarios, and several variations have been studied extensively for decades. We present a model generalizing the $k$-Server Problem by preferences of the requests, where the servers are not identical and requests can express which specific servers should serve them. In our model, requests can either be answered by any server (general requests) or by a specific one (specific requests). If only general requests appear, the instance is one of the original $k$-Server Problem, and a lower bound for the competitive ratio of $k$ applies. If only specific requests appear, a solution with a competitive ratio of $1$ becomes trivial. We show that if both kinds of requests appear, the lower bound raises to $2k-1$. We study deterministic online algorithms and present two algorithms for uniform metrics. The first one has a competitive ratio dependent on the frequency of specific requests. It achieves a worst-case competitive ratio of $3k-2$ while it is optimal when only general requests appear or when specific requests dominate the input sequence. The second has a worst-case competitive ratio of $2k+14$. For the first algorithm, we show a lower bound of $3k-2$, while the second algorithm has a lower bound of $2k-1$ when only general requests appear. The two algorithms differ in only one behavioral rule that significantly influences the competitive ratio. We show that there is a trade-off between performing well against instances of the $k$-Server Problem and mixed instances based on the rule. Additionally, no deterministic online algorithm can be optimal for both kinds of instances simultaneously. Regarding non-uniform metrics, we present an adaption of the Double Coverage algorithm for $2$ servers on the line achieving a competitive ratio of $6$, and an adaption of the Work-Function-Algorithm achieving a competitive ratio of $4k$.

相關內容

Federated learning has attracted increasing attention with the emergence of distributed data. While extensive federated learning algorithms have been proposed for the non-convex distributed problem, the federated learning in practice still faces numerous challenges, such as the large training iterations to converge since the sizes of models and datasets keep increasing, and the lack of adaptivity by SGD-based model updates. Meanwhile, the study of adaptive methods in federated learning is scarce and existing works either lack a complete theoretical convergence guarantee or have slow sample complexity. In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on the momentum-based variance reduced technique in cross-silo FL. We first explore how to design the adaptive algorithm in the FL setting. By providing a counter-example, we prove that a simple combination of FL and adaptive methods could lead to divergence. More importantly, we provide a convergence analysis for our method and prove that our algorithm is the first adaptive FL algorithm to reach the best-known samples $O(\epsilon^{-3})$ and $O(\epsilon^{-2})$ communication rounds to find an $\epsilon$-stationary point without large batches. The experimental results on the language modeling task and image classification task with heterogeneous data demonstrate the efficiency of our algorithms.

Clustering with outliers is one of the most fundamental problems in Computer Science. Given a set $X$ of $n$ points and two integers $k$ and $m$, the clustering with outliers aims to exclude $m$ points from $X$ and partition the remaining points into $k$ clusters that minimizes a certain cost function. In this paper, we give a general approach for solving clustering with outliers, which results in a fixed-parameter tractable (FPT) algorithm in $k$ and $m$, that almost matches the approximation ratio for its outlier-free counterpart. As a corollary, we obtain FPT approximation algorithms with optimal approximation ratios for $k$-Median and $k$-Means with outliers in general metrics. We also exhibit more applications of our approach to other variants of the problem that impose additional constraints on the clustering, such as fairness or matroid constraints.

The behavior of predictive algorithms built on data generated by a prejudiced human decision-maker is a prominent concern in the sphere of algorithmic bias. We consider the setting of a statistical and taste-based discriminator screening members of a disadvantaged group. We suppose one of two algorithms are used to score individuals: the algorithm $s_1$ favors disadvantaged individuals while the algorithm $s_2$ exemplifies the group-based prejudice in the training data set. Abstracting away from the estimation problem, we instead evaluate which of the two algorithms the discriminator prefers by using a version of regret loss generated by an algorithm. We define the notion of a regular and irregular environment and give theoretical guarantees on the firm's preferences in either case. Our main result shows that in a regular environment, greater levels of prejudice lead firms to prefer $s_2$ over $s_1$ on average. In particular, we prove the almost sure existence of a unique level of prejudice where a firm prefers $s_2$ over $s_1$ for any greater level of prejudice. Conversely, in irregular environments, the firm prefers $s_2$ for all $\tau$ almost surely.

The emerging modular vehicle (MV) technology possesses the ability to physically connect/disconnect with each other and thus travel in platoon for less energy consumption. Moreover, a platoon of MVs can be regarded as a new bus-like platform with expanded on-board carrying capacity and provide larger service throughput according to the demand density. This innovation concept might solve the mismatch problems between the fixed vehicle capacity and the temporal-spatial variations of demand in current transportation system. To obtain the optimal assignments and routes for the operation of MVs, a mixed integer linear programming (MILP) model is formulated to minimize the weighted total cost of vehicle travel cost and passenger service time. The temporal and spatial synchronization of vehicle platoons and passenger en-route transfers are determined and optimized by the MILP model while constructing the paths. Heuristic algorithms based on large neighborhood search are developed to solve the modular dial-a-ride problem (MDARP) for practical scenarios. A set of small-scale synthetic numerical experiments are tested to evaluate the optimality gap and computation time between our proposed MILP model and heuristic algorithms. Large-scale experiments are conducted on the Anaheim network with 378 candidate join/split nodes to further explore the potentials and identify the ideal operation scenarios of MVs. The results show that the innovative MV technology can save up to 52.0% in vehicle travel cost, 35.6% in passenger service time, and 29.4% in total cost against existing on-demand mobility services. Results suggest that MVs best benefit from platooning by serving enclave pairs as a hub-and-spoke service.

Federated learning (FL) collaboratively trains a shared global model depending on multiple local clients, while keeping the training data decentralized in order to preserve data privacy. However, standard FL methods ignore the noisy client issue, which may harm the overall performance of the shared model. We first investigate critical issue caused by noisy clients in FL and quantify the negative impact of the noisy clients in terms of the representations learned by different layers. We have the following two key observations: (1) the noisy clients can severely impact the convergence and performance of the global model in FL, and (2) the noisy clients can induce greater bias in the deeper layers than the former layers of the global model. Based on the above observations, we propose Fed-NCL, a framework that conducts robust federated learning with noisy clients. Specifically, Fed-NCL first identifies the noisy clients through well estimating the data quality and model divergence. Then robust layer-wise aggregation is proposed to adaptively aggregate the local models of each client to deal with the data heterogeneity caused by the noisy clients. We further perform the label correction on the noisy clients to improve the generalization of the global model. Experimental results on various datasets demonstrate that our algorithm boosts the performances of different state-of-the-art systems with noisy clients. Our code is available on //github.com/TKH666/Fed-NCL

Partial Label (PL) learning refers to the task of learning from the partially labeled data, where each training instance is ambiguously equipped with a set of candidate labels but only one is valid. Advances in the recent deep PL learning literature have shown that the deep learning paradigms, e.g., self-training, contrastive learning, or class activate values, can achieve promising performance. Inspired by the impressive success of deep Semi-Supervised (SS) learning, we transform the PL learning problem into the SS learning problem, and propose a novel PL learning method, namely Partial Label learning with Semi-supervised Perspective (PLSP). Specifically, we first form the pseudo-labeled dataset by selecting a small number of reliable pseudo-labeled instances with high-confidence prediction scores and treating the remaining instances as pseudo-unlabeled ones. Then we design a SS learning objective, consisting of a supervised loss for pseudo-labeled instances and a semantic consistency regularization for pseudo-unlabeled instances. We further introduce a complementary regularization for those non-candidate labels to constrain the model predictions on them to be as small as possible. Empirical results demonstrate that PLSP significantly outperforms the existing PL baseline methods, especially on high ambiguity levels. Code available: //github.com/changchunli/PLSP.

We study differentially private (DP) stochastic optimization (SO) with loss functions whose worst-case Lipschitz parameter over all data points may be extremely large. To date, the vast majority of work on DP SO assumes that the loss is uniformly Lipschitz continuous over data (i.e. stochastic gradients are uniformly bounded over all data points). While this assumption is convenient, it often leads to pessimistic excess risk bounds. In many practical problems, the worst-case Lipschitz parameter of the loss over all data points may be extremely large due to outliers. In such cases, the error bounds for DP SO, which scale with the worst-case Lipschitz parameter of the loss, are vacuous. To address these limitations, this work provides near-optimal excess risk bounds that do not depend on the uniform Lipschitz parameter of the loss. Building on a recent line of work [WXDX20, KLZ22], we assume that stochastic gradients have bounded $k$-th order moments for some $k \geq 2$. Compared with works on uniformly Lipschitz DP SO, our excess risk scales with the $k$-th moment bound instead of the uniform Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers and/or heavy-tailed data. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). In contrast to [WXDX20, KLZ22], our bounds do not require the loss function to be differentiable/smooth. We also devise an accelerated algorithm for smooth losses that runs in linear time and has excess risk that is tight in certain practical parameter regimes. Additionally, our work is the first to address non-convex non-uniformly Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some practical machine learning models. Our Proximal-PL algorithm has near-optimal excess risk.

Mixed-Integer Linear Programming (MILP) plays an important role across a range of scientific disciplines and within areas of strategic importance to society. The MILP problems, however, suffer from combinatorial complexity. Because of integer decision variables, as the problem size increases, the number of possible solutions increases super-linearly thereby leading to a drastic increase in the computational effort. To efficiently solve MILP problems, a "price-based" decomposition and coordination approach is developed to exploit 1. the super-linear reduction of complexity upon the decomposition and 2. the geometric convergence potential inherent to Polyak's stepsizing formula for the fastest coordination possible to obtain near-optimal solutions in a computationally efficient manner. Unlike all previous methods to set stepsizes heuristically by adjusting hyperparameters, the key novel way to obtain stepsizes is purely decision-based: a novel "auxiliary" constraint satisfaction problem is solved, from which the appropriate stepsizes are inferred. Testing results for large-scale Generalized Assignment Problems (GAP) demonstrate that for the majority of instances, certifiably optimal solutions are obtained. For stochastic job-shop scheduling as well as for pharmaceutical scheduling, computational results demonstrate the two orders of magnitude speedup as compared to Branch-and-Cut (B&C). The new method has a major impact on the efficient resolution of complex Mixed-Integer Programming (MIP) problems arising within a variety of scientific fields.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司