亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the problem of designating navigation goal locations for interactive mobile robots. We propose a point-and-click interface, implemented with an Augmented Reality (AR) headset. The cameras on the AR headset are used to detect natural pointing gestures performed by the user. The selected goal is visualized through the AR headset, allowing the users to adjust the goal location if desired. We conduct a user study in which participants set consecutive navigation goals for the robot using three different interfaces: AR Point & Click, Person Following and Tablet (birdeye map view). Results show that the proposed AR Point&Click interface improved the perceived accuracy, efficiency and reduced mental load compared to the baseline tablet interface, and it performed on-par to the Person Following method. These results show that the AR Point\&Click is a feasible interaction model for setting navigation goals.

相關內容

 增強現實(Augmented Reality,簡稱 AR),是一種實時地計算攝影機影像的位置及角度并加上相應圖像的技術,這種技術的目標是在屏幕上把虛擬世界套在現實世界并進行互動。

Vehicle re-identification (Re-ID) is a critical component of the autonomous driving perception system, and research in this area has accelerated in recent years. However, there is yet no perfect solution to the vehicle re-identification issue associated with the car's surround-view camera system. Our analysis identifies two significant issues in the aforementioned scenario: i) It is difficult to identify the same vehicle in many picture frames due to the unique construction of the fisheye camera. ii) The appearance of the same vehicle when seen via the surround vision system's several cameras is rather different. To overcome these issues, we suggest an integrative vehicle Re-ID solution method. On the one hand, we provide a technique for determining the consistency of the tracking box drift with respect to the target. On the other hand, we combine a Re-ID network based on the attention mechanism with spatial limitations to increase performance in situations involving multiple cameras. Finally, our approach combines state-of-the-art accuracy with real-time performance. We will soon make the source code and annotated fisheye dataset available.

This paper presents the TransBoat, a novel omnidirectional unmanned surface vehicle (USV) with a magnetbased docking system for overwater construction with wave disturbances. This is the first such USV that can build overwater structures by transporting modules. The TransBoat incorporates two features designed to reject wave disturbances. First, the TransBoat's expandable body structure can actively transform from a mono-hull into a multi-hull for stabilization in turbulent environments by extending its four outrigger hulls. Second, a real-time nonlinear model predictive control (NMPC) scheme is proposed for all shapes of the TransBoat to enhance its maneuverability and resist disturbance to its movement, based on a nonlinear dynamic model. An experimental approach is proposed to identify the parameters of the dynamic model, and a subsequent trajectory tracking test validates the dynamics, NMPC controller and system mobility. Further, docking experiments identify improved performance in the expanded form of the TransBoat compared with the contracted form, including an increased success rate (of ~ 10%) and reduced docking time (of ~ 40 s on average). Finally, a bridge construction test verifies our system design and the NMPC control method.

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.

Tens of thousands of engineers use Sourcegraph day-to-day to search for code and rely on it to make progress on software development tasks. We face a key challenge in designing a query language that accommodates the needs of a broad spectrum of users. Our experience shows that users express different and often contradictory preferences for how queries should be interpreted. These preferences stem from users with differing usage contexts, technical experience, and implicit expectations from using prior tools. At the same time, designing a code search query language poses unique challenges because it intersects traditional search engines and full-fledged programming languages. For example, code search queries adopt certain syntactic conventions in the interest of simplicity and terseness but invariably risk encoding implicit semantics that are ambiguous at face-value (a single space in a query could mean three or more semantically different things depending on surrounding terms). Users often need to disambiguate intent with additional syntax so that a query expresses what they actually want to search. This need to disambiguate is one of the primary frustrations we've seen users experience with writing search queries in the last three years. We share our observations that lead us to a fresh perspective where code search behavior can straddle seemingly ambiguous queries. We develop Automated Query Evaluation (AQE), a new technique that automatically generates and adaptively runs alternative query interpretations in frustration-prone conditions. We evaluate AQE with an A/B test across more than 10,000 unique users on our publicly-available code search instance. Our main result shows that relative to the control group, users are on average 22% more likely to click on a search result at all on any given day when AQE is active.

In this work, we present a new computer vision task named video object of interest segmentation (VOIS). Given a video and a target image of interest, our objective is to simultaneously segment and track all objects in the video that are relevant to the target image. This problem combines the traditional video object segmentation task with an additional image indicating the content that users are concerned with. Since no existing dataset is perfectly suitable for this new task, we specifically construct a large-scale dataset called LiveVideos, which contains 2418 pairs of target images and live videos with instance-level annotations. In addition, we propose a transformer-based method for this task. We revisit Swin Transformer and design a dual-path structure to fuse video and image features. Then, a transformer decoder is employed to generate object proposals for segmentation and tracking from the fused features. Extensive experiments on LiveVideos dataset show the superiority of our proposed method.

Trust-region subproblem (TRS) is an important problem arising in many applications such as numerical optimization, Tikhonov regularization of ill-posed problems, and constrained eigenvalue problems. In recent decades, extensive works focus on how to solve the trust-region subproblem efficiently. To the best of our knowledge, there are few results on perturbation analysis of the trust-region subproblem. In order to fill in this gap, we focus on first-order perturbation theory of the trust-region subproblem. The main contributions of this paper are three-fold. First, suppose that the TRS is in easy case, we give a sufficient condition under which the perturbed TRS is still in easy case. Second, with the help of the structure of the TRS and the classical eigenproblem perturbation theory, we perform first-order perturbation analysis on the Lagrange multiplier and the solution of the TRS, and define the condition numbers of them. Third, we point out that the solution and the Lagrange multiplier could be well-conditioned even if TRS is in nearly hard case. The established results are computable, and are helpful to evaluate ill-conditioning of the TRS problem beforehand. Numerical experiments show the sharpness of the established bounds and the effectiveness of the proposed strategies.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司