亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When releasing outputs from confidential data, agencies need to balance the analytical usefulness of the released data with the obligation to protect data subjects' confidentiality. For releases satisfying differential privacy, this balance is reflected by the parameter epsilon, known as the privacy budget. In practice, it can be difficult for agencies to select and interpret epsilon. We use Bayesian posterior probabilities of disclosure to provide a framework for setting epsilon. The agency decides how much posterior risk it is willing to accept in a data release at various levels of prior risk. Using a mathematical relationship among these probabilities and epsilon, the agency selects the maximum epsilon that ensures the posterior-to-prior ratios are acceptable for all values of prior disclosure risk. The framework applies to any differentially private mechanism.

相關內容

Hotword customization is one of the important issues remained in ASR field - it is of value to enable users of ASR systems to customize names of entities, persons and other phrases. The past few years have seen both implicit and explicit modeling strategies for ASR contextualization developed. While these approaches have performed adequately, they still exhibit certain shortcomings such as instability in effectiveness. In this paper we propose Semantic-augmented Contextual-Paraformer (SeACo-Paraformer) a novel NAR based ASR system with flexible and effective hotword customization ability. It combines the accuracy of the AED-based model, the efficiency of the NAR model, and the excellent performance in contextualization. In 50,000 hours industrial big data experiments, our proposed model outperforms strong baselines in customization and general ASR tasks. Besides, we explore an efficient way to filter large scale incoming hotwords for further improvement. The source codes and industrial models proposed and compared are all opened as well as two hotword test sets.

Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions regarding the predictions of hypothetical interventions using observational data. Path models, Structural Equation Models (SEMs), and, more generally, Directed Acyclic Graphs (DAGs), provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon. Unlike DAGs, which make very few assumptions about the functional and parametric form, SEM assumes linearity. This can result in functional misspecification which prevents researchers from undertaking reliable effect size estimation. In contrast, we propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles. We empirically demonstrate its ability to provide consistent and unbiased estimates of causal effects, its competitive performance for linear models when compared with SEM, and highlight its superiority over SEM when dealing with non-linear relationships. We provide open-source code, and a tutorial notebook with example usage, accentuating the easy-to-use nature of the method.

The unprecedented photorealistic results achieved by recent text-to-image generative systems and their increasing use as plug-and-play content creation solutions make it crucial to understand their potential biases. In this work, we introduce three indicators to evaluate the realism, diversity and prompt-generation consistency of text-to-image generative systems when prompted to generate objects from across the world. Our indicators complement qualitative analysis of the broader impact of such systems by enabling automatic and efficient benchmarking of geographic disparities, an important step towards building responsible visual content creation systems. We use our proposed indicators to analyze potential geographic biases in state-of-the-art visual content creation systems and find that: (1) models have less realism and diversity of generations when prompting for Africa and West Asia than Europe, (2) prompting with geographic information comes at a cost to prompt-consistency and diversity of generated images, and (3) models exhibit more region-level disparities for some objects than others. Perhaps most interestingly, our indicators suggest that progress in image generation quality has come at the cost of real-world geographic representation. Our comprehensive evaluation constitutes a crucial step towards ensuring a positive experience of visual content creation for everyone.

Dimensionality reduction (DR) techniques inherently distort the original structure of input high-dimensional data, producing imperfect low-dimensional embeddings. Diverse distortion measures have thus been proposed to evaluate the reliability of DR embeddings. However, implementing and executing distortion measures in practice has so far been time-consuming and tedious. To address this issue, we present ZADU, a Python library that provides distortion measures. ZADU is not only easy to install and execute but also enables comprehensive evaluation of DR embeddings through three key features. First, the library covers a wide range of distortion measures. Second, it automatically optimizes the execution of distortion measures, substantially reducing the running time required to execute multiple measures. Last, the library informs how individual points contribute to the overall distortions, facilitating the detailed analysis of DR embeddings. By simulating a real-world scenario of optimizing DR embeddings, we verify that our optimization scheme substantially reduces the time required to execute distortion measures. Finally, as an application of ZADU, we present another library called ZADUVis that allows users to easily create distortion visualizations that depict the extent to which each region of an embedding suffers from distortions.

An increasing number of researchers are finding use for nth-order gradient computations for a wide variety of applications, including graphics, meta-learning (MAML), scientific computing, and most recently, implicit neural representations (INRs). Recent work shows that the gradient of an INR can be used to edit the data it represents directly without needing to convert it back to a discrete representation. However, given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient due to the higher demand for computing power and higher complexity in data movement. This makes it a promising target for FPGA acceleration. In this work, we introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture. We address this problem in two phases. First, we design a dataflow architecture that uses FIFO streams and an optimized computation kernel library, ensuring high memory efficiency and parallel computation. Second, we propose a compiler that extracts and optimizes computation graphs, automatically configures hardware parameters such as latency and stream depths to optimize throughput, while ensuring deadlock-free operation, and outputs High-Level Synthesis (HLS) code for FPGA implementation. We utilize INR editing as our benchmark, presenting results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively. Furthermore, we obtain 3.1-8.9x and 1.7-4.3x lower memory usage, and 1.7-11.3x and 5.5-32.8x lower energy-delay product. Our framework will be made open-source and available on GitHub.

In recent years, diffusion models have become the most popular and powerful methods in the field of image synthesis, even rivaling human artists in artistic creativity. However, the key issue currently limiting the application of diffusion models is its extremely slow generation process. Although several methods were proposed to speed up the generation process, there still exists a trade-off between efficiency and quality. In this paper, we first provide a detailed theoretical and empirical analysis of the generation process of the diffusion models based on schedulers. We transform the designing problem of schedulers into the determination of several parameters, and further transform the accelerated generation process into an expansion process of the linear subspace. Based on these analyses, we consequently propose a novel method called Optimal Linear Subspace Search (OLSS), which accelerates the generation process by searching for the optimal approximation process of the complete generation process in the linear subspaces spanned by latent variables. OLSS is able to generate high-quality images with a very small number of steps. To demonstrate the effectiveness of our method, we conduct extensive comparative experiments on open-source diffusion models. Experimental results show that with a given number of steps, OLSS can significantly improve the quality of generated images. Using an NVIDIA A100 GPU, we make it possible to generate a high-quality image by Stable Diffusion within only one second without other optimization techniques.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司