Multi-task reinforcement learning (MTRL) demonstrate potential for enhancing the generalization of a robot, enabling it to perform multiple tasks concurrently. However, the performance of MTRL may still be susceptible to conflicts between tasks and negative interference. To facilitate efficient MTRL, we propose Task-Specific Action Correction (TSAC), a general and complementary approach designed for simultaneous learning of multiple tasks. TSAC decomposes policy learning into two separate policies: a shared policy (SP) and an action correction policy (ACP). To alleviate conflicts resulting from excessive focus on specific tasks' details in SP, ACP incorporates goal-oriented sparse rewards, enabling an agent to adopt a long-term perspective and achieve generalization across tasks. Additional rewards transform the original problem into a multi-objective MTRL problem. Furthermore, to convert the multi-objective MTRL into a single-objective formulation, TSAC assigns a virtual expected budget to the sparse rewards and employs Lagrangian method to transform a constrained single-objective optimization into an unconstrained one. Experimental evaluations conducted on Meta-World's MT10 and MT50 benchmarks demonstrate that TSAC outperforms existing state-of-the-art methods, achieving significant improvements in both sample efficiency and effective action execution.
In-context learning (ICL) capabilities is becoming increasingly appealing towards building general intelligence. Taking this concept one step further, we draw a parallel to humans and many animals, who inherit primarily learning capabilities but refine their memory and acquire diverse skills and knowledge through extensive lifelong experiences. This parallel inspires our approach to general purpose in-context learning (GPICL). This paper introduces two lightweight but insightful benchmarks specifically crafted to train and evaluate GPICL functionalities. Each benchmark encompasses a wide range of diverse tasks characterized by generation and interaction, minimal transferable knowledge, and long-term dependency. These features present significant challenges for models that primarily rely on context or interactions to enhance their proficiency. We hope that these benchmarks will not only advance research in GPICL but also contribute significantly to the broader field of general intelligence.
Machine learning (ML) models used in prediction and classification tasks may display performance disparities across population groups determined by sensitive attributes (e.g., race, sex, age). We consider the problem of evaluating the performance of a fixed ML model across population groups defined by multiple sensitive attributes (e.g., race and sex and age). Here, the sample complexity for estimating the worst-case performance gap across groups (e.g., the largest difference in error rates) increases exponentially with the number of group-denoting sensitive attributes. To address this issue, we propose an approach to test for performance disparities based on Conditional Value-at-Risk (CVaR). By allowing a small probabilistic slack on the groups over which a model has approximately equal performance, we show that the sample complexity required for discovering performance violations is reduced exponentially to be at most upper bounded by the square root of the number of groups. As a byproduct of our analysis, when the groups are weighted by a specific prior distribution, we show that R\'enyi entropy of order 2/3 of the prior distribution captures the sample complexity of the proposed CVaR test algorithm. Finally, we also show that there exists a non-i.i.d. data collection strategy that results in a sample complexity independent of the number of groups.
*Relative overgeneralization* (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behavior of other agents. No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods although these methods produce state-of-the-art results. To address this gap, we propose a general, yet simple, framework to enable optimistic updates in MAPG methods that alleviate the RO problem. Our approach involves clipping the advantage to eliminate negative values, thereby facilitating optimistic updates in MAPG. The optimism prevents individual agents from quickly converging to a local optimum. Additionally, we provide a formal analysis to show that the proposed method retains optimality at a fixed point. In extensive evaluations on a diverse set of tasks including the *Multi-agent MuJoCo* and *Overcooked* benchmarks, our method outperforms strong baselines on 13 out of 19 tested tasks and matches the performance on the rest.
Behavioral cloning, or more broadly, learning from demonstrations (LfD) is a priomising direction for robot policy learning in complex scenarios. Albeit being straightforward to implement and data-efficient, behavioral cloning has its own drawbacks, limiting its efficacy in real robot setups. In this work, we take one step towards improving learning from demonstration algorithms by leveraging implicit energy-based policy models. Results suggest that in selected complex robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used neural network-based explicit models, especially in the cases of approximating potentially discontinuous and multimodal functions.
As machine learning (ML) gains widespread adoption, practitioners are increasingly seeking means to quantify and control the risk these systems incur. This challenge is especially salient when ML systems have autonomy to collect their own data, such as in black-box optimization and active learning, where their actions induce sequential feedback-loop shifts in the data distribution. Conformal prediction has emerged as a promising approach to uncertainty and risk quantification, but prior variants' validity guarantees have assumed some form of ``quasi-exchangeability'' on the data distribution, thereby excluding many types of sequential shifts. In this paper we prove that conformal prediction can theoretically be extended to \textit{any} joint data distribution, not just exchangeable or quasi-exchangeable ones, although it is exceedingly impractical to compute in the most general case. For practical applications, we outline a procedure for deriving specific conformal algorithms for any data distribution, and we use this procedure to derive tractable algorithms for a series of ML-agent-induced covariate shifts. We evaluate the proposed algorithms empirically on synthetic black-box optimization and active learning tasks.
This paper studies reward-agnostic exploration in reinforcement learning (RL) -- a scenario where the learner is unware of the reward functions during the exploration stage -- and designs an algorithm that improves over the state of the art. More precisely, consider a finite-horizon inhomogeneous Markov decision process with $S$ states, $A$ actions, and horizon length $H$, and suppose that there are no more than a polynomial number of given reward functions of interest. By collecting an order of \begin{align*} \frac{SAH^3}{\varepsilon^2} \text{ sample episodes (up to log factor)} \end{align*} without guidance of the reward information, our algorithm is able to find $\varepsilon$-optimal policies for all these reward functions, provided that $\varepsilon$ is sufficiently small. This forms the first reward-agnostic exploration scheme in this context that achieves provable minimax optimality. Furthermore, once the sample size exceeds $\frac{S^2AH^3}{\varepsilon^2}$ episodes (up to log factor), our algorithm is able to yield $\varepsilon$ accuracy for arbitrarily many reward functions (even when they are adversarially designed), a task commonly dubbed as ``reward-free exploration.'' The novelty of our algorithm design draws on insights from offline RL: the exploration scheme attempts to maximize a critical reward-agnostic quantity that dictates the performance of offline RL, while the policy learning paradigm leverages ideas from sample-optimal offline RL paradigms.
Gaussian Process Regression (GPR) is widely used in statistics and machine learning for prediction tasks requiring uncertainty measures. Its efficacy depends on the appropriate specification of the mean function, covariance kernel function, and associated hyperparameters. Severe misspecifications can lead to inaccurate results and problematic consequences, especially in safety-critical applications. However, a systematic approach to handle these misspecifications is lacking in the literature. In this work, we propose a general framework to address these issues. Firstly, we introduce a flexible two-stage GPR framework that separates mean prediction and uncertainty quantification (UQ) to prevent mean misspecification, which can introduce bias into the model. Secondly, kernel function misspecification is addressed through a novel automatic kernel search algorithm, supported by theoretical analysis, that selects the optimal kernel from a candidate set. Additionally, we propose a subsampling-based warm-start strategy for hyperparameter initialization to improve efficiency and avoid hyperparameter misspecification. With much lower computational cost, our subsampling-based strategy can yield competitive or better performance than training exclusively on the full dataset. Combining all these components, we recommend two GPR methods-exact and scalable-designed to match available computational resources and specific UQ requirements. Extensive evaluation on real-world datasets, including UCI benchmarks and a safety-critical medical case study, demonstrates the robustness and precision of our methods.
Semantic communication has undergone considerable evolution due to the recent rapid development of artificial intelligence (AI), significantly enhancing both communication robustness and efficiency. Despite these advancements, most current semantic communication methods for image transmission pay little attention to the differing importance of objects and backgrounds in images. To address this issue, we propose a novel scheme named ASCViT-JSCC, which utilizes vision transformers (ViTs) integrated with an orthogonal frequency division multiplexing (OFDM) system. This scheme adaptively allocates bandwidth for objects and backgrounds in images according to the importance order of different parts determined by object detection of you only look once version 5 (YOLOv5) and feature points detection of scale invariant feature transform (SIFT). Furthermore, the proposed scheme adheres to digital modulation standards by incorporating quantization modules. We validate this approach through an over-the-air (OTA) testbed named intelligent communication prototype validation platform (ICP) based on a software-defined radio (SDR) and NVIDIA embedded kits. Our findings from both simulations and practical measurements show that ASCViT-JSCC significantly preserves objects in images and enhances reconstruction quality compared to existing methods.
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.