Automated landing for Unmanned Aerial Vehicles (UAVs), like multirotor drones, requires intricate software encompassing control algorithms, obstacle avoidance, and machine vision, especially when landing markers assist. Failed landings can lead to significant costs from damaged drones or payloads and the time spent seeking alternative landing solutions. Therefore, it's important to fully test auto-landing systems through simulations before deploying them in the real-world to ensure safety. This paper proposes RLaGA, a reinforcement learning (RL) augmented search-based testing framework, which constructs diverse and real marker-based landing cases that involve safety violations. Specifically, RLaGA introduces a genetic algorithm (GA) to conservatively search for diverse static environment configurations offline and RL to aggressively manipulate dynamic objects' trajectories online to find potential vulnerabilities in the target deployment environment. Quantitative results reveal that our method generates up to 22.19% more violation cases and nearly doubles the diversity of generated violation cases compared to baseline methods. Qualitatively, our method can discover those corner cases which would be missed by state-of-the-art algorithms. We demonstrate that select types of these corner cases can be confirmed via real-world testing with drones in the field.
Realistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: //alvinliu0.github.io/projects/HumanGaussian
Contrastive pretraining of image-text foundation models, such as CLIP, demonstrated excellent zero-shot performance and improved robustness on a wide range of downstream tasks. However, these models utilize large transformer-based encoders with significant memory and latency overhead which pose challenges for deployment on mobile devices. In this work, we introduce MobileCLIP -- a new family of efficient image-text models optimized for runtime performance along with a novel and efficient training approach, namely multi-modal reinforced training. The proposed training approach leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP encoders to improve the accuracy of efficient models. Our approach avoids train-time compute overhead by storing the additional knowledge in a reinforced dataset. MobileCLIP sets a new state-of-the-art latency-accuracy tradeoff for zero-shot classification and retrieval tasks on several datasets. Our MobileCLIP-S2 variant is 2.3$\times$ faster while more accurate compared to previous best CLIP model based on ViT-B/16. We further demonstrate the effectiveness of our multi-modal reinforced training by training a CLIP model based on ViT-B/16 image backbone and achieving +2.9% average performance improvement on 38 evaluation benchmarks compared to the previous best. Moreover, we show that the proposed approach achieves 10$\times$-1000$\times$ improved learning efficiency when compared with non-reinforced CLIP training.
Battery-powered IoT devices face challenges like cost, maintenance, and environmental sustainability, prompting the emergence of batteryless energy-harvesting systems that harness ambient sources. However, their intermittent behavior can disrupt program execution and cause data loss, leading to unpredictable outcomes. Despite exhaustive studies employing conventional checkpoint methods and intricate programming paradigms to address these pitfalls, this paper proposes an innovative systematic methodology, namely DIAC. The DIAC synthesis procedure enhances the performance and efficiency of intermittent computing systems, with a focus on maximizing forward progress and minimizing the energy overhead imposed by distinct memory arrays for backup. Then, a finite-state machine is delineated, encapsulating the core operations of an IoT node, sense, compute, transmit, and sleep states. First, we validate the robustness and functionalities of a DIAC-based design in the presence of power disruptions. DIAC is then applied to a wide range of benchmarks, including ISCAS-89, MCNS, and ITC-99. The simulation results substantiate the power-delay-product (PDP) benefits. For example, results for complex MCNC benchmarks indicate a PDP improvement of 61%, 56%, and 38% on average compared to three alternative techniques, evaluated at 45 nm.
This paper presents Sim-Suction, a robust object-aware suction grasp policy for mobile manipulation platforms with dynamic camera viewpoints, designed to pick up unknown objects from cluttered environments. Suction grasp policies typically employ data-driven approaches, necessitating large-scale, accurately-annotated suction grasp datasets. However, the generation of suction grasp datasets in cluttered environments remains underexplored, leaving uncertainties about the relationship between the object of interest and its surroundings. To address this, we propose a benchmark synthetic dataset, Sim-Suction-Dataset, comprising 500 cluttered environments with 3.2 million annotated suction grasp poses. The efficient Sim-Suction-Dataset generation process provides novel insights by combining analytical models with dynamic physical simulations to create fast and accurate suction grasp pose annotations. We introduce Sim-Suction-Pointnet to generate robust 6D suction grasp poses by learning point-wise affordances from the Sim-Suction-Dataset, leveraging the synergy of zero-shot text-to-segmentation. Real-world experiments for picking up all objects demonstrate that Sim-Suction-Pointnet achieves success rates of 96.76%, 94.23%, and 92.39% on cluttered level 1 objects (prismatic shape), cluttered level 2 objects (more complex geometry), and cluttered mixed objects, respectively. The Sim-Suction policies outperform state-of-the-art benchmarks tested by approximately 21% in cluttered mixed scenes.
Fully Homomorphic Encryption (FHE) is a technique that allows arbitrary computations to be performed on encrypted data without the need for decryption, making it ideal for securing many emerging applications. However, FHE computation is significantly slower than computation on plain data due to the increase in data size after encryption. Processing In-Memory (PIM) is a promising technology that can accelerate data-intensive workloads with extensive parallelism. However, FHE is challenging for PIM acceleration due to the long-bitwidth multiplications and complex data movements involved. We propose a PIM-based FHE accelerator, FHEmem, which exploits a novel processing in-memory architecture to achieve high-throughput and efficient acceleration for FHE. We propose an optimized end-to-end processing flow, from low-level hardware processing to high-level application mapping, that fully exploits the high throughput of FHEmem hardware. Our evaluation shows FHEmem achieves significant speedup and efficiency improvement over state-of-the-art FHE accelerators.
The high computational and memory requirements of generative large language models (LLMs) make it challenging to serve them cheaply. This paper aims to reduce the monetary cost for serving LLMs by leveraging preemptible GPU instances on modern clouds, which offer accesses to spare GPUs at a much cheaper price than regular instances but may be preempted by the cloud at any time. Serving LLMs on preemptible instances requires addressing challenges induced by frequent instance preemptions and the necessity of migrating instances to handle these preemptions. This paper presents SpotServe, the first distributed LLM serving system on preemptible instances. Several key techniques in SpotServe realize fast and reliable serving of generative LLMs on cheap preemptible instances. First, SpotServe dynamically adapts the LLM parallelization configuration for dynamic instance availability and fluctuating workload, while balancing the trade-off among the overall throughput, inference latency and monetary costs. Second, to minimize the cost of migrating instances for dynamic reparallelization, the task of migrating instances is formulated as a bipartite graph matching problem, which uses the Kuhn-Munkres algorithm to identify an optimal migration plan that minimizes communications. Finally, to take advantage of the grace period offered by modern clouds, we introduce stateful inference recovery, a new inference mechanism that commits inference progress at a much finer granularity and allows SpotServe to cheaply resume inference upon preemption. We evaluate on real spot instance preemption traces and various popular LLMs and show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems. We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.
Generative models have demonstrated substantial promise in Natural Language Processing (NLP) and have found application in designing molecules, as seen in General Pretrained Transformer (GPT) models. In our efforts to develop such a tool for exploring the organic chemical space in search of potentially electro-active compounds, we present "LLamol", a single novel generative transformer model based on the LLama 2 architecture, which was trained on a 13M superset of organic compounds drawn from diverse public sources. To allow for a maximum flexibility in usage and robustness in view of potentially incomplete data, we introduce "Stochastic Context Learning" as a new training procedure. We demonstrate that the resulting model adeptly handles single- and multi-conditional organic molecule generation with up to four conditions, yet more are possible. The model generates valid molecular structures in SMILES notation while flexibly incorporating three numerical and/or one token sequence into the generative process, just as requested. The generated compounds are very satisfactory in all scenarios tested. In detail, we showcase the model's capability to utilize token sequences for conditioning, either individually or in combination with numerical properties, making LLamol a potent tool for de novo molecule design, easily expandable with new properties.
In the domain of 3D Human Pose Estimation, which finds widespread daily applications, the requirement for convenient acquisition equipment continues to grow. To satisfy this demand, we set our sights on a short-baseline binocular setting that offers both portability and a geometric measurement property that radically mitigates depth ambiguity. However, as the binocular baseline shortens, two serious challenges emerge: first, the robustness of 3D reconstruction against 2D errors deteriorates; and second, occlusion reoccurs due to the limited visual differences between two views. To address the first challenge, we propose the Stereo Co-Keypoints Estimation module to improve the view consistency of 2D keypoints and enhance the 3D robustness. In this module, the disparity is utilized to represent the correspondence of binocular 2D points and the Stereo Volume Feature is introduced to contain binocular features across different disparities. Through the regression of SVF, two-view 2D keypoints are simultaneously estimated in a collaborative way which restricts their view consistency. Furthermore, to deal with occlusions, a Pre-trained Pose Transformer module is introduced. Through this module, 3D poses are refined by perceiving pose coherence, a representation of joint correlations. This perception is injected by the Pose Transformer network and learned through a pre-training task that recovers iterative masked joints. Comprehensive experiments carried out on H36M and MHAD datasets, complemented by visualizations, validate the effectiveness of our approach in the short-baseline binocular 3D Human Pose Estimation and occlusion handling.
We present BackboneLearn: an open-source software package and framework for scaling mixed-integer optimization (MIO) problems with indicator variables to high-dimensional problems. This optimization paradigm can naturally be used to formulate fundamental problems in interpretable supervised learning (e.g., sparse regression and decision trees), in unsupervised learning (e.g., clustering), and beyond; BackboneLearn solves the aforementioned problems faster than exact methods and with higher accuracy than commonly used heuristics. The package is built in Python and is user-friendly and easily extensible: users can directly implement a backbone algorithm for their MIO problem at hand. The source code of BackboneLearn is available on GitHub (link: //github.com/chziakas/backbone_learn).
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.