亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) paradigms enable large numbers of clients to collaboratively train Machine Learning models on private data. However, due to their multi-party nature, traditional FL schemes are left vulnerable to Byzantine attacks that attempt to hurt model performance by injecting malicious backdoors. A wide variety of prevention methods have been proposed to protect frameworks from such attacks. This paper provides a exhaustive and updated taxonomy of existing methods and frameworks, before zooming in and conducting an in-depth analysis of the strengths and weaknesses of the Robustness of Federated Learning (RoFL) protocol. From there, we propose two novel Sybil-based attacks that take advantage of vulnerabilities in RoFL. Finally, we conclude with comprehensive proposals for future testing, describe and detail implementation of the proposed attacks, and offer direction for improvements in the RoFL protocol as well as Byzantine-robust frameworks as a whole.

相關內容

The flux vector splitting (FVS) method has firstly been incorporated into the discontinuous Galerkin (DG) framework for reconstructing the numerical fluxes required for the spatial semi-discrete formulation, setting it apart from the conventional DG approaches that typically utilize the Lax-Friedrichs flux scheme or classical Riemann solvers. The control equations of hyperbolic conservation systems are initially reformulated into a flux-split form. Subsequently, a variational approach is applied to this flux-split form, from which a DG spatial semi-discrete scheme based on FVS is derived. In order to suppress numerical pseudo-oscillations, the smoothness measurement function IS from the WENO limiter is integrated into the TVB(D)-minmod limiter, constructing an optimization problem based on the smoothness factor constraint, thereby realizing a TVB(D)-minmod limiter applicable to arbitrary high-order polynomial approximation. Subsequently, drawing on the ``reconstructed polynomial and the original high-order scheme's L2 -error constraint'' from the literature [1] , combined with our smoothness factor constraint, a bi-objective optimization problem is formulated to enable the TVB(D)-minmod limiter to balance oscillation suppression and high precision. As for hyperbolic conservation systems, limiters are typically required to be used in conjunction with local characteristic decomposition. To transform polynomials from the physical space to the characteristic space, an interpolation-based characteristic transformation scheme has been proposed, and its equivalence with the original moment characteristic transformation has been demonstrated in one-dimensional scenarios. Finally, the concept of ``flux vector splitting based on Jacobian eigenvalue decomposition'' has been applied to the conservative linear scalar transport equations and the nonlinear Burgers' equation.

Markov decision processes (MDPs) are a standard model for sequential decision-making problems and are widely used across many scientific areas, including formal methods and artificial intelligence (AI). MDPs do, however, come with the restrictive assumption that the transition probabilities need to be precisely known. Robust MDPs (RMDPs) overcome this assumption by instead defining the transition probabilities to belong to some uncertainty set. We present a gentle survey on RMDPs, providing a tutorial covering their fundamentals. In particular, we discuss RMDP semantics and how to solve them by extending standard MDP methods such as value iteration and policy iteration. We also discuss how RMDPs relate to other models and how they are used in several contexts, including reinforcement learning and abstraction techniques. We conclude with some challenges for future work on RMDPs.

Information Retrieval (IR) systems used in search and recommendation platforms frequently employ Learning-to-Rank (LTR) models to rank items in response to user queries. These models heavily rely on features derived from user interactions, such as clicks and engagement data. This dependence introduces cold start issues for items lacking user engagement and poses challenges in adapting to non-stationary shifts in user behavior over time. We address both challenges holistically as an online learning problem and propose BayesCNS, a Bayesian approach designed to handle cold start and non-stationary distribution shifts in search systems at scale. BayesCNS achieves this by estimating prior distributions for user-item interactions, which are continuously updated with new user interactions gathered online. This online learning procedure is guided by a ranker model, enabling efficient exploration of relevant items using contextual information provided by the ranker. We successfully deployed BayesCNS in a large-scale search system and demonstrated its efficacy through comprehensive offline and online experiments. Notably, an online A/B experiment showed a 10.60% increase in new item interactions and a 1.05% improvement in overall success metrics over the existing production baseline.

Large vision-language models (LVLMs) demonstrate remarkable capabilities in multimodal tasks but are prone to misinterpreting visual inputs, often resulting in hallucinations and unreliable outputs. To address these challenges, we propose Dropout Decoding, a novel inference-time approach that quantifies the uncertainty of visual tokens and selectively masks uncertain tokens to improve decoding. Our method measures the uncertainty of each visual token by projecting it onto the text space and decomposing it into aleatoric and epistemic components. Specifically, we focus on epistemic uncertainty, which captures perception-related errors more effectively. Inspired by dropout regularization, we introduce uncertainty-guided token dropout, which applies the dropout principle to input visual tokens instead of model parameters, and during inference rather than training. By aggregating predictions from an ensemble of masked decoding contexts, Dropout Decoding robustly mitigates errors arising from visual token misinterpretations. Evaluations on benchmarks including CHAIR, THRONE, and MMBench demonstrate that Dropout Decoding significantly reduces object hallucinations (OH) and enhances both reliability and quality of LVLM outputs across diverse visual contexts.

Generalized feed-forward Gaussian models have achieved significant progress in sparse-view 3D reconstruction by leveraging prior knowledge from large multi-view datasets. However, these models often struggle to represent high-frequency details due to the limited number of Gaussians. While the densification strategy used in per-scene 3D Gaussian splatting (3D-GS) optimization can be adapted to the feed-forward models, it may not be ideally suited for generalized scenarios. In this paper, we propose Generative Densification, an efficient and generalizable method to densify Gaussians generated by feed-forward models. Unlike the 3D-GS densification strategy, which iteratively splits and clones raw Gaussian parameters, our method up-samples feature representations from the feed-forward models and generates their corresponding fine Gaussians in a single forward pass, leveraging the embedded prior knowledge for enhanced generalization. Experimental results on both object-level and scene-level reconstruction tasks demonstrate that our method outperforms state-of-the-art approaches with comparable or smaller model sizes, achieving notable improvements in representing fine details.

While remarkable success has been achieved through diffusion-based 3D generative models for shapes, 4D generative modeling remains challenging due to the complexity of object deformations over time. We propose DNF, a new 4D representation for unconditional generative modeling that efficiently models deformable shapes with disentangled shape and motion while capturing high-fidelity details in the deforming objects. To achieve this, we propose a dictionary learning approach to disentangle 4D motion from shape as neural fields. Both shape and motion are represented as learned latent spaces, where each deformable shape is represented by its shape and motion global latent codes, shape-specific coefficient vectors, and shared dictionary information. This captures both shape-specific detail and global shared information in the learned dictionary. Our dictionary-based representation well balances fidelity, contiguity and compression -- combined with a transformer-based diffusion model, our method is able to generate effective, high-fidelity 4D animations.

Reconstructing high-fidelity 3D head avatars is crucial in various applications such as virtual reality. The pioneering methods reconstruct realistic head avatars with Neural Radiance Fields (NeRF), which have been limited by training and rendering speed. Recent methods based on 3D Gaussian Splatting (3DGS) significantly improve the efficiency of training and rendering. However, the surface inconsistency of 3DGS results in subpar geometric accuracy; later, 2DGS uses 2D surfels to enhance geometric accuracy at the expense of rendering fidelity. To leverage the benefits of both 2DGS and 3DGS, we propose a novel method named MixedGaussianAvatar for realistically and geometrically accurate head avatar reconstruction. Our main idea is to utilize 2D Gaussians to reconstruct the surface of the 3D head, ensuring geometric accuracy. We attach the 2D Gaussians to the triangular mesh of the FLAME model and connect additional 3D Gaussians to those 2D Gaussians where the rendering quality of 2DGS is inadequate, creating a mixed 2D-3D Gaussian representation. These 2D-3D Gaussians can then be animated using FLAME parameters. We further introduce a progressive training strategy that first trains the 2D Gaussians and then fine-tunes the mixed 2D-3D Gaussians. We demonstrate the superiority of MixedGaussianAvatar through comprehensive experiments. The code will be released at: //github.com/ChenVoid/MGA/.

The increasing demand for processing large volumes of data for machine learning models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this paper, we present the IMPACT: InMemory ComPuting Architecture Based on Y-FlAsh Technology for Coalesced Tsetlin Machine Inference, underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm CMOS process. Y-Flash devices have recently been demonstrated for digital and analog memory applications, offering high yield, non-volatility, and low power consumption. The IMPACT leverages the Y-Flash array to implement the inference of a novel machine learning algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. The IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved 96.3% accuracy. The IMPACT demonstrated improvements in energy efficiency, e.g., 2.23X over CNN-based ReRAM, 2.46X over Neuromorphic using NOR-Flash, and 2.06X over DNN-based PCM, suited for modern ML inference applications.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

北京阿比特科技有限公司