This paper proposes an effective computational tool for brittle crack propagation problems based on a combination of a higher-order phase-field model and a non-conforming mesh using a NURBS-based isogeometric approach. This combination, as demonstrated in this paper, is of great benefit in reducing the computational cost of using a local refinement mesh and a higher-order phase-field, which needs higher derivatives of basis functions. Compared with other approaches using a local refinement mesh, the Virtual Uncommon-Knot-Inserted Master-Slave (VUKIMS) method presented here is not only simple to implement but can also reduce the variable numbers. VUKIMS is an outstanding choice in order to establish a local refinement mesh, i.e. a non-conforming mesh, in a multi-patch problem. A phase-field model is an efficient approach for various complicated crack patterns, including those with or without an initial crack path, curved cracks, crack coalescence, and crack propagation through holes. The paper demonstrates that cubic NURBS elements are ideal for balancing the computational cost and the accuracy because they can produce accurate solutions by utilising a lower degree of freedom number than an extremely fine mesh of first-order B-spline elements.
We derive a thermodynamically consistent, non-isothermal, hydrodynamic model for incompressible binary fluids following the generalized Onsager principle and Boussinesq approximation. This model preserves not only the volume of each fluid phase but also the positive entropy production rate under thermodynamically consistent boundary conditions. Guided by the thermodynamical consistency of the model, a set of second order structure-preserving numerical algorithms are devised to solve the governing partial differential equations along with consistent boundary conditions in the model, which preserve the entropy production rate as well as the volume of each fluid phase at the discrete level. Several numerical simulations are carried out using an efficient adaptive time-stepping strategy based on one of the structure-preserving schemes to simulate the Rayleigh-B\'{e}nard convection in the binary fluid and interfacial dynamics between two immiscible fluids under competing effects of the temperature gradient, gravity, and interfacial forces. Roll cell patterns and thermally induced mixing of binary fluids are observed in a rectangular region with insulated lateral boundaries and vertical ones with imposed temperature difference. Long time simulations of interfacial dynamics are performed demonstrating robust results of new structure-preserving schemes.
In this paper, a methodology for fine scale modeling of large scale structures is proposed, which combines the variational multiscale method, domain decomposition and model order reduction. The influence of the fine scale on the coarse scale is modelled by the use of an additive split of the displacement field, addressing applications without a clear scale separation. Local reduced spaces are constructed by solving an oversampling problem with random boundary conditions. Herein, we inform the boundary conditions by a global reduced problem and compare our approach using physically meaningful correlated samples with existing approaches using uncorrelated samples. The local spaces are designed such that the local contribution of each subdomain can be coupled in a conforming way, which also preserves the sparsity pattern of standard finite element assembly procedures. Several numerical experiments show the accuracy and efficiency of the method, as well as its potential to reduce the size of the local spaces and the number of training samples compared to the uncorrelated sampling.
Variational phase-field models of fracture are widely used to simulate nucleation and propagation of cracks in brittle materials. They are based on the approximation of the solutions of free-discontinuity fracture energy by two smooth function: a displacement and a damage field. Their numerical implementation is typically based on the discretization of both fields by nodal $\mathbb{P}^1$ Lagrange finite elements. In this article, we propose a nonconforming approximation by discontinuous elements for the displacement and nonconforming elements, whose gradient is more isotropic, for the damage. The handling of the nonconformity is derived from that of heterogeneous diffusion problems. We illustrate the robustness and versatility of the proposed method through series of examples.
The integrating factor technique is widely used to solve numerically (in particular) the Schr\"odinger equation in the context of spectral methods. Here, we present an improvement of this method exploiting the freedom provided by the gauge condition of the potential. Optimal gauge conditions are derived considering the equation and the temporal numerical resolution with an adaptive embedded scheme of arbitrary order. We illustrate this approach with the nonlinear Schr\"odinger (NLS) and with the Schr\"odinger-Newton (SN) equations. We show that this optimization increases significantly the overall computational speed, sometimes by a factor five or more. This gain is crucial for long time simulations.
We present a novel fully implicit hybrid finite volume/finite element method for incompressible flows. Following previous works on semi-implicit hybrid FV/FE schemes, the incompressible Navier-Stokes equations are split into a pressure and a transport-diffusion subsystem. The first of them can be seen as a Poisson type problem and is thus solved efficiently using classical continuous Lagrange finite elements. On the other hand, finite volume methods are employed to solve the convective subsystem, in combination with Crouzeix-Raviart finite elements for the discretization of the viscous stress tensor. For some applications, the related CFL condition, even if depending only in the bulk velocity, may yield a severe time restriction in case explicit schemes are used. To overcome this issue an implicit approach is proposed. The system obtained from the implicit discretization of the transport-diffusion operator is solved using an inexact Newton-Krylov method, based either on the BiCStab or the GMRES algorithm. To improve the convergence properties of the linear solver a symmetric Gauss-Seidel (SGS) preconditioner is employed, together with a simple but efficient approach for the reordering of the grid elements that is compatible with MPI parallelization. Besides, considering the Ducros flux for the nonlinear convective terms we can prove that the discrete advection scheme is kinetic energy stable. The methodology is carefully assessed through a set of classical benchmarks for fluid mechanics. A last test shows the potential applicability of the method in the context of blood flow simulation in realistic vessel geometries.
Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to their practical applications in computational complexity and information protection. In this paper, we give some methods for constructing LCD codes over small finite fields by modifying some typical methods for constructing linear codes. We show that all odd-like binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes can be constructed using the modified methods. Our results improve the known lower bounds on the largest minimum distances of LCD codes. Furthermore, we give two counterexamples to disprove the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. 89(11): 2445-2461, 2021).
This paper studies the exploitation of triple polarization (TP) for multi-user (MU) holographic multiple-input multiple-output surface (HMIMOS) wireless communication systems, aiming at capacity boosting without enlarging the antenna array size. We specifically consider that both the transmitter and receiver are equipped with an HMIMOS comprising compact sub-wavelength TP patch antennas. To characterize TP MUHMIMOS systems, a TP near-field channel model is proposed using the dyadic Green's function, whose characteristics are leveraged to design a user-cluster-based precoding scheme for mitigating the cross-polarization and inter-user interference contributions. A theoretical correlation analysis for HMIMOS with infinitely small patch antennas is also presented. According to the proposed scheme, the users are assigned to one of the three polarizations, which is easy to implement, at the cost, however, of reducing the system's diversity. Our numerical results showcase that the cross-polarization channel components have a nonnegligible impact on the system performance, which is efficiently eliminated with the proposed MU precoding scheme.
Bayesian inference with nested sampling requires a likelihood-restricted prior sampling method, which draws samples from the prior distribution that exceed a likelihood threshold. For high-dimensional problems, Markov Chain Monte Carlo derivatives have been proposed. We numerically study ten algorithms based on slice sampling, hit-and-run and differential evolution algorithms in ellipsoidal, non-ellipsoidal and non-convex problems from 2 to 100 dimensions. Mixing capabilities are evaluated with the nested sampling shrinkage test. This makes our results valid independent of how heavy-tailed the posteriors are. Given the same number of steps, slice sampling is outperformed by hit-and-run and whitened slice sampling, while whitened hit-and-run does not provide as good results. Proposing along differential vectors of live point pairs also leads to the highest efficiencies, and appears promising for multi-modal problems. The tested proposals are implemented in the UltraNest nested sampling package, enabling efficient low and high-dimensional inference of a large class of practical inference problems relevant to astronomy, cosmology, particle physics and astronomy.
This paper proposes a flexible framework for inferring large-scale time-varying and time-lagged correlation networks from multivariate or high-dimensional non-stationary time series with piecewise smooth trends. Built on a novel and unified multiple-testing procedure of time-lagged cross-correlation functions with a fixed or diverging number of lags, our method can accurately disclose flexible time-varying network structures associated with complex functional structures at all time points. We broaden the applicability of our method to the structure breaks by developing difference-based nonparametric estimators of cross-correlations, achieve accurate family-wise error control via a bootstrap-assisted procedure adaptive to the complex temporal dynamics, and enhance the probability of recovering the time-varying network structures using a new uniform variance reduction technique. We prove the asymptotic validity of the proposed method and demonstrate its effectiveness in finite samples through simulation studies and empirical applications.
We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms involved in the formulation of the continuous system. Both the Ampere--Maxwell and the Faraday equations are required to hold strongly, while to make the system solvable two discrete Hodge star operators are used. By exploiting the properties of the chosen spline spaces and concepts from exterior calculus, a non-standard explicit in time formulation is introduced, based on the solution of linear systems with matrices presenting Kronecker product structure, rather than mass matrices as in the standard literature. These matrices arise from the application of the exterior (wedge) product in the discrete setting, and they present Kronecker product structure independently of the geometry of the domain or the material parameters. The resulting scheme preserves the desirable energy conservation properties of the known approaches. The computational advantages of the newly proposed scheme are studied both through a complexity analysis and through numerical experiments in three dimensions.