亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantized networks use less computational and memory resources and are suitable for deployment on edge devices. While quantization-aware training QAT is the well-studied approach to quantize the networks at low precision, most research focuses on over-parameterized networks for classification with limited studies on popular and edge device friendly single-shot object detection and semantic segmentation methods like YOLO. Moreover, majority of QAT methods rely on Straight-through Estimator (STE) approximation which suffers from an oscillation phenomenon resulting in sub-optimal network quantization. In this paper, we show that it is difficult to achieve extremely low precision (4-bit and lower) for efficient YOLO models even with SOTA QAT methods due to oscillation issue and existing methods to overcome this problem are not effective on these models. To mitigate the effect of oscillation, we first propose Exponentially Moving Average (EMA) based update to the QAT model. Further, we propose a simple QAT correction method, namely QC, that takes only a single epoch of training after standard QAT procedure to correct the error induced by oscillating weights and activations resulting in a more accurate quantized model. With extensive evaluation on COCO dataset using various YOLO5 and YOLO7 variants, we show that our correction method improves quantized YOLO networks consistently on both object detection and segmentation tasks at low-precision (4-bit and 3-bit).

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡會議。 Publisher:IFIP。 SIT:

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

Why do deep neural networks (DNNs) benefit from very high dimensional parameter spaces? Their huge parameter complexities vs. stunning performances in practice is all the more intriguing and not explainable using the standard theory of regular models. In this work, we propose a geometrically flavored information-theoretic approach to study this phenomenon. Namely, we introduce the locally varying dimensionality of the parameter space of neural network models by considering the number of significant dimensions of the Fisher information matrix, and model the parameter space as a manifold using the framework of singular semi-Riemannian geometry. We derive model complexity measures which yield short description lengths for deep neural network models based on their singularity analysis thus explaining the good performance of DNNs despite their large number of parameters.

The challenge of exchanging and processing of big data over Mobile Crowdsensing (MCS) networks calls for the new design of responsive and seamless service provisioning as well as proper incentive mechanisms. Although conventional onsite spot trading of resources based on real-time network conditions and decisions can facilitate the data sharing over MCS networks, it often suffers from prohibitively long service provisioning delays and unavoidable trading failures due to its reliance on timely analysis of complex and dynamic MCS environments. These limitations motivate us to investigate an integrated forward and spot trading mechanism (iFAST), which entails a new hybrid service trading protocol over the MCS network architecture. In iFAST, the sellers (i.e., mobile users with sensing resources) can provide long-term or temporary sensing services to the buyers (i.e., sensing task owners). iFast enables signing long-term contracts in advance of future transactions through a forward trading mode, via analyzing historical statistics of the market, for which the notion of overbooking is introduced and promoted. iFAST further enables the buyers with unsatisfying service quality to recruit temporary sellers through a spot trading mode, upon considering the current market/network conditions. We analyze the fundamental blocks of iFAST, and provide a case study to demonstrate its superior performance as compared to existing methods. Finally, future research directions on reliable service provisioning for next-generation MCS networks are summarized.

Methodologies for development of complex systems and models include external reviews by domain and technology experts. Among others, such reviews can uncover undocumented built-in assumptions that may be critical for correct and safe operation or constrain applicability. Since such assumptions may still escape human-centered processes like reviews, agile development, and risk analyses, here, we contribute toward making this process more methodical and automatable. We first present a blueprint for a taxonomy and formalization of the problem. We then show that a variety of digital artifacts of the system or model can be automatically checked against extensive reference knowledge. Since mimicking the breadth and depth of knowledge and skills of experts may appear unattainable, we illustrate the basic feasibility of automation with rudimentary experiments using OpenAI's ChatGPT. We believe that systematic handling of this aspect of system engineering can contribute significantly to the quality and safety of complex systems and models, and to the efficiency of development projects. We dedicate this work to Werner Damm, whose contributions to modeling and model-based development, in industry and academia, with a special focus on safety, helped establish a solid foundation to our discipline and to the work of many scientists and professionals, including, naturally, the approaches and techniques described here.

Federated learning (FL) has demonstrated great potential in revolutionizing distributed machine learning, and tremendous efforts have been made to extend it beyond the original focus on supervised learning. Among many directions, federated contextual bandits (FCB), a pivotal integration of FL and sequential decision-making, has garnered significant attention in recent years. Despite substantial progress, existing FCB approaches have largely employed their tailored FL components, often deviating from the canonical FL framework. Consequently, even renowned algorithms like FedAvg remain under-utilized in FCB, let alone other FL advancements. Motivated by this disconnection, this work takes one step towards building a tighter relationship between the canonical FL study and the investigations on FCB. In particular, a novel FCB design, termed FedIGW, is proposed to leverage a regression-based CB algorithm, i.e., inverse gap weighting. Compared with existing FCB approaches, the proposed FedIGW design can better harness the entire spectrum of FL innovations, which is concretely reflected as (1) flexible incorporation of (both existing and forthcoming) FL protocols; (2) modularized plug-in of FL analyses in performance guarantees; (3) seamless integration of FL appendages (such as personalization, robustness, and privacy). We substantiate these claims through rigorous theoretical analyses and empirical evaluations.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司