亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides. The proposed scheme can act as a fully analogue system for nonlinear signal processing directly in the optical domain. By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks. We first evaluate the performance of our scheme in the Santa-Fe chaotic time-series prediction. The true power of this processor is revealed in the all-optical nonlinearity compensation in an optical communication scenario where we provide results superior to those offered by strong machine learning algorithms with reduced power consumption and computational complexity. Finally, we showcase how the FWM module can be used as a reconfigurable nonlinear activation module being capable of reproducing characteristic functions such as sigmoid or rectified linear unit.

相關內容

Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.

Reinforcement Learning-based Recommender Systems (RLRS) have shown promise across a spectrum of applications, from e-commerce platforms to streaming services. Yet, they grapple with challenges, notably in crafting reward functions and harnessing large pre-existing datasets within the RL framework. Recent advancements in offline RLRS provide a solution for how to address these two challenges. However, existing methods mainly rely on the transformer architecture, which, as sequence lengths increase, can introduce challenges associated with computational resources and training costs. Additionally, the prevalent methods employ fixed-length input trajectories, restricting their capacity to capture evolving user preferences. In this study, we introduce a new offline RLRS method to deal with the above problems. We reinterpret the RLRS challenge by modeling sequential decision-making as an inference task, leveraging adaptive masking configurations. This adaptive approach selectively masks input tokens, transforming the recommendation task into an inference challenge based on varying token subsets, thereby enhancing the agent's ability to infer across diverse trajectory lengths. Furthermore, we incorporate a multi-scale segmented retention mechanism that facilitates efficient modeling of long sequences, significantly enhancing computational efficiency. Our experimental analysis, conducted on both online simulator and offline datasets, clearly demonstrates the advantages of our proposed method.

Trajectory generation for quadrotors with limited field-of-view sensors has numerous applications such as aerial exploration, coverage, inspection, videography, and target tracking. Most previous works simplify the task of optimizing yaw trajectories by either aligning the heading of the robot with its velocity, or potentially restricting the feasible space of candidate trajectories by using a limited yaw domain to circumvent angular singularities. In this paper, we propose a novel \textit{global} yaw parameterization method for trajectory optimization that allows a 360-degree yaw variation as demanded by the underlying algorithm. This approach effectively bypasses inherent singularities by including supplementary quadratic constraints and transforming the final decision variables into the desired state representation. This method significantly reduces the needed control effort, and improves optimization feasibility. Furthermore, we apply the method to several examples of different applications that require jointly optimizing over both the yaw and position trajectories. Ultimately, we present a comprehensive numerical analysis and evaluation of our proposed method in both simulation and real-world experiments.

Diffraction tomography is an inverse scattering technique used to reconstruct the spatial distribution of the material properties of a weakly scattering object. The object is exposed to radiation, typically light or ultrasound, and the scattered waves induced from different incident field angles are recorded. In conventional diffraction tomography, the incident wave is assumed to be a monochromatic plane wave, an unrealistic simplification in practical imaging scenarios. In this article, we extend conventional diffraction tomography by introducing the concept of customized illumination scenarios, with a pronounced emphasis on imaging with focused beams. We present a new forward model that incorporates a generalized incident field and extends the classical Fourier diffraction theorem to the use of this incident field. This yields a new two-step reconstruction process which we comprehensively evaluate through numerical experiments.

Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application given its ability to depict the global metabolic pattern in biological samples. However, the data is noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection, and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.

In this paper, we consider the physical layer security of an RIS-assisted multiple-antenna communication system with randomly located eavesdroppers. The exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and a closed-form expression for the secrecy outage probability (SOP) is obtained. It is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, and the impact of the transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. We also perform an analytical study demonstrating that the secrecy diversity order depends on the path loss exponent of the RIS-to-ground links. Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations.

In this paper we define a class of polynomial functors suited for constructing coalgebras representing processes in which uncertainty plays an important role. In these polynomial functors we include upper and lower probability measures, finitely additive probability measures, plausibilty measures (and their duals, belief functions), and possibility measures. We give axioms and inference rules for the associated system of coalgebraic modal logic, and construct the canonical coalgebras to prove a completeness result.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司