In view of the security issues of the Internet of Things (IoT), considered better combining edge computing and blockchain with the IoT, integrating attribute-based encryption (ABE) and attribute-based access control (ABAC) models with attributes as the entry point, an attribute-based encryption and access control scheme (ABE-ACS) has been proposed. Facing Edge-Iot, which is a heterogeneous network composed of most resource-limited IoT devices and some nodes with higher computing power. For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC) with improvement of the proof-of-work consensus. For the access control policies, the threshold tree and LSSS are used for conversion and assignment, stored in the blockchain to protect the privacy of the policy. For device and data, six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity. Thus, our scheme realizing Edge-Iot privacy protection, data and device controlled access. The security analysis shows that the proposed scheme is secure and the experimental results show that our LBC has higher throughput and lower resources consumption, the cost of encryption and decryption of our scheme is desirable.
Federated Learning (FL) provides privacy preservation by allowing the model training at edge devices without the need of sending the data from edge to a centralized server. FL has distributed the implementation of ML. Another variant of FL which is well suited for the Internet of Things (IoT) is known as Collaborated Federated Learning (CFL), which does not require an edge device to have a direct link to the model aggregator. Instead, the devices can connect to the central model aggregator via other devices using them as relays. Although, FL and CFL protect the privacy of edge devices but raises security challenges for a centralized server that performs model aggregation. The centralized server is prone to malfunction, backdoor attacks, model corruption, adversarial attacks and external attacks. Moreover, edge device to centralized server data exchange is not required in FL and CFL, but model parameters are sent from the model aggregator (global model) to edge devices (local model), which is still prone to cyber-attacks. These security and privacy concerns can be potentially addressed by Blockchain technology. The blockchain is a decentralized and consensus-based chain where devices can share consensus ledgers with increased reliability and security, thus significantly reducing the cyberattacks on an exchange of information. In this work, we will investigate the efficacy of blockchain-based decentralized exchange of model parameters and relevant information among edge devices and from a centralized server to edge devices. Moreover, we will be conducting the feasibility analysis for blockchain-based CFL models for different application scenarios like the internet of vehicles, and the internet of things. The proposed study aims to improve the security, reliability and privacy preservation by the use of blockchain-powered CFL.
This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.
In this paper, to address backhaul capacity bottleneck and concurrently optimize energy consumption and delay, we formulate a novel weighted-sum multi-objective optimization problem where popular content caching placement and integrated access and backhaul (IAB) millimeter (mmWave) bandwidth partitioning are optimized jointly to provide Pareto efficient optimal non-dominating solutions. In such integrated networks analysis of what-if scenarios to understand trade-offs in decision space, without losing sight of optimality, is important. A wide set of numerical investigations reveal that compared with the nominal single objective optimization schemes such as optimizing only the delay or the energy consumption the proposed optimization framework allows for a reduction of the aggregation of energy consumption and delay by an average of 30% to 55%.
The complexity of cyberattacks in Cyber-Physical Systems (CPSs) calls for a mechanism that can evaluate critical infrastructures' operational behaviour and security without affecting the operation of live systems. In this regard, Digital Twins (DTs) provide actionable insights through monitoring, simulating, predicting, and optimizing the state of CPSs. Through the use cases, including system testing and training, detecting system misconfigurations, and security testing, DTs strengthen the security of CPSs throughout the product lifecycle. However, such benefits of DTs depend on an assumption about data integrity and security. Data trustworthiness becomes more critical while integrating multiple components among different DTs owned by various stakeholders to provide an aggregated view of the complex physical system. This article envisions a blockchain-based DT framework as Trusted Twins for Securing Cyber-Physical Systems (TTS-CPS). With the automotive industry as a CPS use case, we demonstrate the viability of the TTS-CPS framework in a proof of concept. To utilize reliable system specification data for building the process knowledge of DTs, we ensure the trustworthiness of data-generating sources through integrity checking mechanisms. Additionally, the safety and security rules evaluated during simulation are stored and retrieved from the blockchain, thereby establishing more understanding and confidence in the decisions made by the underlying systems. Finally, we perform formal verification of the TTS-CPS.
The widespread adoption of 5G cellular technology will evolve as one of the major drivers for the growth of IoT-based applications. In this paper, we consider a Service Provider (SP) that launches a smart city service based on IoT data readings: in order to serve IoT data collected across different locations, the SP dynamically negotiates and rescales bandwidth and service functions. 5G network slicing functions are key to lease an appropriate amount of resources over heterogeneous access technologies and different site types. Also, different infrastructure providers will charge slicing service depending on specific access technology supported across sites and IoT data collection patterns. We introduce a pricing mechanism based on Age of Information (AoI) to reduce the cost of SPs. It provides incentives for devices to smooth traffic by shifting part of the traffic load from highly congested and more expensive locations to lesser charged ones, while meeting QoS requirements of the IoT service. The proposed optimal pricing scheme comprises a two-stage decision process, where the SP determines the pricing of each location and devices schedule uploads of collected data based on the optimal uploading policy. Simulations show that the SP attains consistent cost reductions tuning the trade-off between slicing costs and the AoI of uploaded IoT data.
Recently, the concept of open radio access network (O-RAN) has been proposed, which aims to adopt intelligence and openness in the next generation radio access networks (RAN). It provides standardized interfaces and the ability to host network applications from third-party vendors by x-applications (xAPPs), which enables higher flexibility for network management. However, this may lead to conflicts in network function implementations, especially when these functions are implemented by different vendors. In this paper, we aim to mitigate the conflicts between xAPPs for near-real-time (near-RT) radio intelligent controller (RIC) of O-RAN. In particular, we propose a team learning algorithm to enhance the performance of the network by increasing cooperation between xAPPs. We compare the team learning approach with independent deep Q-learning where network functions individually optimize resources. Our simulations show that team learning has better network performance under various user mobility and traffic loads. With 6 Mbps traffic load and 20 m/s user movement speed, team learning achieves 8% higher throughput and 64.8% lower PDR.
Existing authentication solutions proposed for Internet of Things (IoT) provide a single Level of Assurance (LoA) regardless of the sensitivity levels of the resources or interactions between IoT devices being protected. For effective (with adequate level of protection) and efficient (with as low overhead costs as possible) protections, it may be desirable to tailor the protection level in response to the sensitivity level of the resources, as a stronger protection level typically imposes a higher level of overheads costs. In this paper, we investigate how to facilitate multi-LoA authentication for IoT by proposing a multi-factor multi-level and interaction based (M2I) authentication framework. The framework implements LoA linked and interaction based authentication. Two interaction modes are investigated, P2P (Peer-to-Peer) and O2M (One-to-Many) via the design of two corresponding protocols. Evaluation results show that adopting the O2M interaction mode in authentication can cut communication cost significantly; compared with that of the Kerberos protocol, the O2M protocol reduces the communication cost by 42% ~ 45%. The protocols also introduce less computational cost. The P2P and O2M protocol, respectively, reduce the computational cost by 70% ~ 72% and 81% ~ 82% in comparison with that of Kerberos. Evaluation results also show that the two factor authentication option costs twice as much as that of the one-factor option.
In this paper, we propose a novel architecture for a deep learning system, named k-degree layer-wise network, to realize efficient geo-distributed computing between Cloud and Internet of Things (IoT). The geo-distributed computing extends Cloud to the geographical verge of the network in the neighbor of IoT. The basic ideas of the proposal include a k-degree constraint and a layer-wise constraint. The k-degree constraint is defined such that the degree of each vertex on the h-th layer is exactly k(h) to extend the existing deep belief networks and control the communication cost. The layer-wise constraint is defined such that the layer-wise degrees are monotonically decreasing in positive direction to gradually reduce the dimension of data. We prove the k-degree layer-wise network is sparse, while a typical deep neural network is dense. In an evaluation on the M-distributed MNIST database, the proposal is superior to a state-of-the-art model in terms of communication cost and learning time with scalability.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.