亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Complete resection of malignant gliomas is hampered by the difficulty in distinguishing tumor cells at the infiltration zone. Fluorescence guidance with 5-ALA assists in reaching this goal. Using hyperspectral imaging, previous work characterized five fluorophores' emission spectra in most human brain tumors. In this paper, the effectiveness of these five spectra was explored for different tumor and tissue classification tasks in 184 patients (891 hyperspectral measurements) harboring low- (n=30) and high-grade gliomas (n=115), non-glial primary brain tumors (n=19), radiation necrosis (n=2), miscellaneous (n=10) and metastases (n=8). Four machine learning models were trained to classify tumor type, grade, glioma margins and IDH mutation. Using random forests and multi-layer perceptrons, the classifiers achieved average test accuracies of 74-82%, 79%, 81%, and 93% respectively. All five fluorophore abundances varied between tumor margin types and tumor grades (p < 0.01). For tissue type, at least four of the five fluorophore abundances were found to be significantly different (p < 0.01) between all classes. These results demonstrate the fluorophores' differing abundances in different tissue classes, as well as the value of the five fluorophores as potential optical biomarkers, opening new opportunities for intraoperative classification systems in fluorescence-guided neurosurgery.

相關內容

We consider the sequential decision-making problem where the mean outcome is a non-linear function of the chosen action. Compared with the linear model, two curious phenomena arise in non-linear models: first, in addition to the "learning phase" with a standard parametric rate for estimation or regret, there is an "burn-in period" with a fixed cost determined by the non-linear function; second, achieving the smallest burn-in cost requires new exploration algorithms. For a special family of non-linear functions named ridge functions in the literature, we derive upper and lower bounds on the optimal burn-in cost, and in addition, on the entire learning trajectory during the burn-in period via differential equations. In particular, a two-stage algorithm that first finds a good initial action and then treats the problem as locally linear is statistically optimal. In contrast, several classical algorithms, such as UCB and algorithms relying on regression oracles, are provably suboptimal.

Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles. Accurately forecasting crowd trajectories is challenging due to the uncertain nature of human motions in different environments. For training, recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians, among others. This can limit the prediction performance across various scenarios since the discrepancies between training datasets have not been properly incorporated. To overcome this limitation, this paper proposes a graph transformer structure to improve prediction performance, capturing the differences between the various sites and scenarios contained in the datasets. In particular, a self-attention mechanism and a domain adaption module have been designed to improve the generalization ability of the model. Moreover, an additional metric considering cross-dataset sequences is introduced for training and performance evaluation purposes. The proposed framework is validated and compared against existing methods using popular public datasets, i.e., ETH and UCY. Experimental results demonstrate the improved performance of our proposed scheme.

Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA (t-SMILES with Shared Atom), TSDY (t-SMILES with Dummy Atom) and TSID (t-SMILES with ID). It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility to construct a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. Additionally, it exhibits impressive performance on low-resource datasets, whether the model is original, data augmented, or pre-training fine-tuned. It significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. Furthermore, it surpasses start-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.

Emotion recognition in conversations is challenging due to the multi-modal nature of the emotion expression. We propose a hierarchical cross-attention model (HCAM) approach to multi-modal emotion recognition using a combination of recurrent and co-attention neural network models. The input to the model consists of two modalities, i) audio data, processed through a learnable wav2vec approach and, ii) text data represented using a bidirectional encoder representations from transformers (BERT) model. The audio and text representations are processed using a set of bi-directional recurrent neural network layers with self-attention that converts each utterance in a given conversation to a fixed dimensional embedding. In order to incorporate contextual knowledge and the information across the two modalities, the audio and text embeddings are combined using a co-attention layer that attempts to weigh the utterance level embeddings relevant to the task of emotion recognition. The neural network parameters in the audio layers, text layers as well as the multi-modal co-attention layers, are hierarchically trained for the emotion classification task. We perform experiments on three established datasets namely, IEMOCAP, MELD and CMU-MOSI, where we illustrate that the proposed model improves significantly over other benchmarks and helps achieve state-of-art results on all these datasets.

With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of least squares (LS) problems $\min_x\|b-Ax\|_2$, where $A \in \mathbb{R}^{m\times n}$, arise in numerous application areas. Overdetermined standard least squares problems can be solved by using mixed precision within the iterative refinement method of Bj\"{o}rck, which transforms the least squares problem into an $(m+n)\times(m+n)$ ''augmented'' system. It has recently been shown that mixed precision GMRES-based iterative refinement can also be used, in an approach termed GMRES-LSIR. In practice, we often encounter types of least squares problems beyond standard least squares, including weighted least squares (WLS), $\min_x\|D^{1/2}(b-Ax)\|_2$, where $D^{1/2}$ is a diagonal matrix of weights. In this paper, we discuss a mixed precision FGMRES-WLSIR algorithm for solving WLS problems using two different preconditioners.

Fourier phase retrieval is essential for high-definition imaging of nanoscale structures across diverse fields, notably coherent diffraction imaging. This study presents the Single impliCit neurAl Network (SCAN), a tool built upon coordinate neural networks meticulously designed for enhanced phase retrieval performance. Remedying the drawbacks of conventional iterative methods which are easiliy trapped into local minimum solutions and sensitive to noise, SCAN adeptly connects object coordinates to their amplitude and phase within a unified network in an unsupervised manner. While many existing methods primarily use Fourier magnitude in their loss function, our approach incorporates both the predicted magnitude and phase, enhancing retrieval accuracy. Comprehensive tests validate SCAN's superiority over traditional and other deep learning models regarding accuracy and noise robustness. We also demonstrate that SCAN excels in the ptychography setting.

Decision-making is a dynamic process requiring perception, memory, and reasoning to make choices and find optimal policies. Traditional approaches to decision-making suffer from sample efficiency and generalization, while large-scale self-supervised pretraining has enabled fast adaptation with fine-tuning or few-shot learning in language and vision. We thus argue to integrate knowledge acquired from generic large-scale self-supervised pretraining into downstream decision-making problems. We propose Pretrain-Then-Adapt pipeline and survey recent work on data collection, pretraining objectives and adaptation strategies for decision-making pretraining and downstream inference. Finally, we identify critical challenges and future directions for developing decision foundation model with the help of generic and flexible self-supervised pretraining.

Economic and policy factors are driving the continuous increase in the adoption and usage of electrical vehicles (EVs). However, despite being a cleaner alternative to combustion engine vehicles, EVs have negative impacts on the lifespan of microgrid equipment and energy balance due to increased power demand and the timing of their usage. In our view grid management should leverage on EVs scheduling flexibility to support local network balancing through active participation in demand response programs. In this paper, we propose a model-free solution, leveraging Deep Q-Learning to schedule the charging and discharging activities of EVs within a microgrid to align with a target energy profile provided by the distribution system operator. We adapted the Bellman Equation to assess the value of a state based on specific rewards for EV scheduling actions and used a neural network to estimate Q-values for available actions and the epsilon-greedy algorithm to balance exploitation and exploration to meet the target energy profile. The results are promising showing that the proposed solution can effectively schedule the EVs charging and discharging actions to align with the target profile with a Person coefficient of 0.99, handling effective EVs scheduling situations that involve dynamicity given by the e-mobility features, relying only on data with no knowledge of EVs and microgrid dynamics.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司