It is essential to have a method to map an unknown terrain for various applications. For places where human access is not possible, a method should be proposed to identify the environment. Exploration, disaster relief, transportation and many other purposes would be convenient if a map of the environment is available. Replicating the human vision system using stereo cameras would be an optimum solution. In this work, we have used laser ranging based technique fused with stereo cameras to extract dimension of objects for mapping. The distortions were calibrated using mathematical model of the camera. By means of Semi Global Block Matching [1] disparity map was generated and reduces the noise using novel noise reduction method of disparity map by dilation. The Data from the Laser Range Finder (LRF) and noise reduced vision data has been used to identify the object parameters.
In the field of 3D object detection for autonomous driving, the sensor portfolio including multi-modality and single-modality is diverse and complex. Since the multi-modal methods have system complexity while the accuracy of single-modal ones is relatively low, how to make a tradeoff between them is difficult. In this work, we propose a universal cross-modality knowledge distillation framework (UniDistill) to improve the performance of single-modality detectors. Specifically, during training, UniDistill projects the features of both the teacher and the student detector into Bird's-Eye-View (BEV), which is a friendly representation for different modalities. Then, three distillation losses are calculated to sparsely align the foreground features, helping the student learn from the teacher without introducing additional cost during inference. Taking advantage of the similar detection paradigm of different detectors in BEV, UniDistill easily supports LiDAR-to-camera, camera-to-LiDAR, fusion-to-LiDAR and fusion-to-camera distillation paths. Furthermore, the three distillation losses can filter the effect of misaligned background information and balance between objects of different sizes, improving the distillation effectiveness. Extensive experiments on nuScenes demonstrate that UniDistill effectively improves the mAP and NDS of student detectors by 2.0%~3.2%.
In simulation sciences, it is desirable to capture the real-world problem features as accurately as possible. Methods popular for scientific simulations such as the finite element method (FEM) and finite volume method (FVM) use piecewise polynomials to approximate various characteristics of a problem, such as the concentration profile and the temperature distribution across the domain. Polynomials are prone to creating artifacts such as Gibbs oscillations while capturing a complex profile. An efficient and accurate approach must be applied to deal with such inconsistencies in order to obtain accurate simulations. This often entails dealing with negative values for the concentration of chemicals, exceeding a percentage value over 100, and other such problems. We consider these inconsistencies in the context of partial differential equations (PDEs). We propose an innovative filter based on convex optimization to deal with the inconsistencies observed in polynomial-based simulations. In two or three spatial dimensions, additional complexities are involved in solving the problems related to structure preservation. We present the construction and application of a structure-preserving filter with a focus on multidimensional PDEs. Methods used such as the Barycentric interpolation for polynomial evaluation at arbitrary points in the domain and an optimized root-finder to identify points of interest improve the filter efficiency, usability, and robustness. Lastly, we present numerical experiments in 2D and 3D using discontinuous Galerkin formulation and demonstrate the filter's efficacy to preserve the desired structure. As a real-world application, implementation of the mathematical biology model involving platelet aggregation and blood coagulation has been reviewed and the issues around FEM implementation of the model are resolved by applying the proposed structure-preserving filter.
In this paper, we concern on the bottom-up paradigm in multi-person pose estimation (MPPE). Most previous bottom-up methods try to consider the relation of instances to identify different body parts during the post processing, while ignoring to model the relation among instances or environment in the feature learning process. In addition, most existing works adopt the operations of upsampling and downsampling. During the sampling process, there will be a problem of misalignment with the source features, resulting in deviations in the keypoint features learned by the model. To overcome the above limitations, we propose a convolutional neural network for bottom-up human pose estimation. It invovles two basic modules: (i) Global Relation Modeling (GRM) module globally learns relation (e.g., environment context, instance interactive information) among region of image by fusing multiple stages features in the feature learning process. It combines with the spatial-channel attention mechanism, which focuses on achieving adaptability in spatial and channel dimensions. (ii) Multi-branch Feature Align (MFA) module aggregates features from multiple branches to align fused feature and obtain refined local keypoint representation. Our model has the ability to focus on different granularity from local to global regions, which significantly boosts the performance of the multi-person pose estimation. Our results on the COCO and CrowdPose datasets demonstrate that it is an efficient framework for multi-person pose estimation.
We derive a formula for optimal hard thresholding of the singular value decomposition in the presence of correlated additive noise; although it nominally involves unobservables, we show how to apply it even where the noise covariance structure is not a-priori known or is not independently estimable. The proposed method, which we call ScreeNOT, is a mathematically solid alternative to Cattell's ever-popular but vague Scree Plot heuristic from 1966. ScreeNOT has a surprising oracle property: it typically achieves exactly, in large finite samples, the lowest possible MSE for matrix recovery, on each given problem instance - i.e. the specific threshold it selects gives exactly the smallest achievable MSE loss among all possible threshold choices for that noisy dataset and that unknown underlying true low rank model. The method is computationally efficient and robust against perturbations of the underlying covariance structure. Our results depend on the assumption that the singular values of the noise have a limiting empirical distribution of compact support; this model, which is standard in random matrix theory, is satisfied by many models exhibiting either cross-row correlation structure or cross-column correlation structure, and also by many situations where there is inter-element correlation structure. Simulations demonstrate the effectiveness of the method even at moderate matrix sizes. The paper is supplemented by ready-to-use software packages implementing the proposed algorithm: package ScreeNOT in Python (via PyPI) and R (via CRAN).
Humanoids are versatile robotic platforms because of their limbs with multiple degrees of freedom. Although humanoids can walk like humans, the speed is relatively slow, and they cannot run over large barriers. To address these problems, we aim to achieve rapid terrestrial locomotion ability and simultaneously expand the domain of locomotion to the air by utilizing thrust for propulsion. In this paper, we first describe an optimized construction method of a humanoid robot equipped with wheels and a flight unit to achieve these abilities. Then, we describe the integrated control framework of the proposed flying humanoid for each mode of locomotion: aerial locomotion, leg locomotion, and wheel locomotion. Finally, we achieved multimodal locomotion and aerial manipulation experiments using the robot platform proposed in this work. To the best of our knowledge, it is the first time to achieve three different types of locomotion, including flight, by a single humanoid.
Neuromorphic (event-based) image sensors draw inspiration from the human-retina to create an electronic device that can process visual stimuli in a way that closely resembles its biological counterpart. These sensors process information significantly different than the traditional RGB sensors. Specifically, the sensory information generated by event-based image sensors are orders of magnitude sparser compared to that of RGB sensors. The first generation of neuromorphic image sensors, Dynamic Vision Sensor (DVS), are inspired by the computations confined to the photoreceptors and the first retinal synapse. In this work, we highlight the capability of the second generation of neuromorphic image sensors, Integrated Retinal Functionality in CMOS Image Sensors (IRIS), which aims to mimic full retinal computations from photoreceptors to output of the retina (retinal ganglion cells) for targeted feature-extraction. The feature of choice in this work is Object Motion Sensitivity (OMS) that is processed locally in the IRIS sensor. We study the capability of OMS in solving the ego-motion problem of the event-based cameras. Our results show that OMS can accomplish standard computer vision tasks with similar efficiency to conventional RGB and DVS solutions but offers drastic bandwidth reduction. This cuts the wireless and computing power budgets and opens up vast opportunities in high-speed, robust, energy-efficient, and low-bandwidth real-time decision making.
We propose a novel method for joint estimation of shape and pose of rigid objects from their sequentially observed RGB-D images. In sharp contrast to past approaches that rely on complex non-linear optimization, we propose to formulate it as a neural optimization that learns to efficiently estimate the shape and pose. We introduce Deep Directional Distance Function (DeepDDF), a neural network that directly outputs the depth image of an object given the camera viewpoint and viewing direction, for efficient error computation in 2D image space. We formulate the joint estimation itself as a Transformer which we refer to as TransPoser. We fully leverage the tokenization and multi-head attention to sequentially process the growing set of observations and to efficiently update the shape and pose with a learned momentum, respectively. Experimental results on synthetic and real data show that DeepDDF achieves high accuracy as a category-level object shape representation and TransPoser achieves state-of-the-art accuracy efficiently for joint shape and pose estimation.
Event cameras are becoming increasingly popular in robotics and computer vision due to their beneficial properties, e.g., high temporal resolution, high bandwidth, almost no motion blur, and low power consumption. However, these cameras remain expensive and scarce in the market, making them inaccessible to the majority. Using event simulators minimizes the need for real event cameras to develop novel algorithms. However, due to the computational complexity of the simulation, the event streams of existing simulators cannot be generated in real-time but rather have to be pre-calculated from existing video sequences or pre-rendered and then simulated from a virtual 3D scene. Although these offline generated event streams can be used as training data for learning tasks, all response time dependent applications cannot benefit from these simulators yet, as they still require an actual event camera. This work proposes simulation methods that improve the performance of event simulation by two orders of magnitude (making them real-time capable) while remaining competitive in the quality assessment.
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at //magicfusion.github.io/.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.