亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of model compression is to reduce the size of a large neural network while retaining a comparable performance. As a result, computation and memory costs in resource-limited applications may be significantly reduced by dropping redundant weights, neurons, or layers. There have been many model compression algorithms proposed that provide impressive empirical success. However, a theoretical understanding of model compression is still limited. One problem is understanding if a network is more compressible than another of the same structure. Another problem is quantifying how much one can prune a network with theoretically guaranteed accuracy degradation. In this work, we propose to use the sparsity-sensitive $\ell_q$-norm ($0<q<1$) to characterize compressibility and provide a relationship between soft sparsity of the weights in the network and the degree of compression with a controlled accuracy degradation bound. We also develop adaptive algorithms for pruning each neuron in the network informed by our theory. Numerical studies demonstrate the promising performance of the proposed methods compared with standard pruning algorithms.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議(yi)。 Publisher:IFIP。 SIT:

As the accuracy of machine learning models increases at a fast rate, so does their demand for energy and compute resources. On a low level, the major part of these resources is consumed by data movement between different memory units. Modern hardware architectures contain a form of fast memory (e.g., cache, registers), which is small, and a slow memory (e.g., DRAM), which is larger but expensive to access. We can only process data that is stored in fast memory, which incurs data movement (input/output-operations, or I/Os) between the two units. In this paper, we provide a rigorous theoretical analysis of the I/Os needed in sparse feedforward neural network (FFNN) inference. We establish bounds that determine the optimal number of I/Os up to a factor of 2 and present a method that uses a number of I/Os within that range. Much of the I/O-complexity is determined by a few high-level properties of the FFNN (number of inputs, outputs, neurons, and connections), but if we want to get closer to the exact lower bound, the instance-specific sparsity patterns need to be considered. Departing from the 2-optimal computation strategy, we show how to reduce the number of I/Os further with simulated annealing. Complementing this result, we provide an algorithm that constructively generates networks with maximum I/O-efficiency for inference. We test the algorithms and empirically verify our theoretical and algorithmic contributions. In our experiments on real hardware we observe speedups of up to 45$\times$ relative to the standard way of performing inference.

Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.

It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.

This is paper for the smooth function approximation by neural networks (NN). Mathematical or physical functions can be replaced by NN models through regression. In this study, we get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters, through discussing a few topics about regression. First, we reinterpret inside of NNs for regression; consequently, we propose a new activation function--integrated sigmoid linear unit (ISLU). Then special charateristics of metadata for regression, which is different from other data like image or sound, is discussed for improving the performance of neural networks. Finally, the one of a simple hierarchical NN that generate models substituting mathematical function is presented, and the new batch concept ``meta-batch" which improves the performance of NN several times more is introduced. The new activation function, meta-batch method, features of numerical data, meta-augmentation with metaparameters, and a structure of NN generating a compact multi-layer perceptron(MLP) are essential in this study.

Statistical power is a measure of the replicability of a categorical hypothesis test. Formally, it is the probability of detecting an effect, if there is a true effect present in the population. Hence, optimizing statistical power as a function of some parameters of a hypothesis test is desirable. However, for most hypothesis tests, the explicit functional form of statistical power for individual model parameters is unknown; but calculating power for a given set of values of those parameters is possible using simulated experiments. These simulated experiments are usually computationally expensive. Hence, developing the entire statistical power manifold using simulations can be very time-consuming. We propose a novel genetic algorithm-based framework for learning statistical power manifolds. For a multiple linear regression $F$-test, we show that the proposed algorithm/framework learns the statistical power manifold much faster as compared to a brute-force approach as the number of queries to the power oracle is significantly reduced. We also show that the quality of learning the manifold improves as the number of iterations increases for the genetic algorithm. Such tools are useful for evaluating statistical power trade-offs when researchers have little information regarding a priori `best guesses' of primary effect sizes of interest or how sampling variability in non-primary effects impacts power for primary ones.

Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.

Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.

Sparse principal component analysis (SPCA) has been widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite there are many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) based on the elastic net are still unknown. We aim to close this important theoretical gap in this paper. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. Also, we study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms. We prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the numerical performance of both algorithms in simulation studies.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司