In this paper we propose a new approach to realizability interpretations for nonstandard arithmetic. We deal with nonstandard analysis in the context of (semi)intuitionistic realizability, focusing on the Lightstone-Robinson construction of a model for nonstandard analysis through an ultrapower. In particular, we consider an extension of the $\lambda$-calculus with a memory cell, that contains an integer (the state), in order to indicate in which slice of the ultrapower $\cal{M}^{\mathbb{N}}$ the computation is being done. We pay attention to the nonstandard principles (and their computational content) obtainable in this setting. In particular, we give non-trivial realizers to Idealization and a non-standard version of the LLPO principle. We then discuss how to quotient this product to mimic the Lightstone-Robinson construction.
Prior beliefs about the latent function to shape inductive biases can be incorporated into a Gaussian Process (GP) via the kernel. However, beyond kernel choices, the decision-making process of GP models remains poorly understood. In this work, we contribute an analysis of the loss landscape for GP models using methods from physics. We demonstrate $\nu$-continuity for Matern kernels and outline aspects of catastrophe theory at critical points in the loss landscape. By directly including $\nu$ in the hyperparameter optimisation for Matern kernels, we find that typical values of $\nu$ are far from optimal in terms of performance, yet prevail in the literature due to the increased computational speed. We also provide an a priori method for evaluating the effect of GP ensembles and discuss various voting approaches based on physical properties of the loss landscape. The utility of these approaches is demonstrated for various synthetic and real datasets. Our findings provide an enhanced understanding of the decision-making process behind GPs and offer practical guidance for improving their performance and interpretability in a range of applications.
The Moore-Penrose inverse is widely used in physics, statistics, and various fields of engineering. It captures well the notion of inversion of linear operators in the case of overcomplete data. In data science, nonlinear operators are extensively used. In this paper we characterize the fundamental properties of a pseudo-inverse (PI) for nonlinear operators. The concept is defined broadly. First for general sets, and then a refinement for normed spaces. The PI for normed spaces yields the Moore-Penrose inverse when the operator is a matrix. We present conditions for existence and uniqueness of a PI and establish theoretical results investigating its properties, such as continuity, its value for operator compositions and projection operators, and others. Analytic expressions are given for the PI of some well-known, non-invertible, nonlinear operators, such as hard- or soft-thresholding and ReLU. Finally, we analyze a neural layer and discuss relations to wavelet thresholding.
Specifications of complex, large scale, computer software and hardware systems can be radically simplified by using simple maps from input sequences to output values. These "state machine maps" provide an alternative representation of classical Moore type state machines. Composition of state machine maps corresponds to state machine products and can be used to specify essentially any type of interconnection as well as parallel and distributed computation. State machine maps can also specify abstract properties of systems and are significantly more concise and scalable than traditional representations of automata. Examples included here include specifications of producer/consumer software, network distributed consensus, real-time digital circuits, and operating system scheduling. The motivation for this work comes from experience designing and developing operating systems and real-time software where weak methods for understanding and exploring designs is a well known handicap. The methods introduced here are based on ordinary discrete mathematics, primitive recursive functions and deterministic state machines and are intended, initially, to aid the intuition and understanding of the system developers. Staying strictly within the boundaries of classical deterministic state machines anchors the methods to the algebraic structures of automata and semigroups, obviates any need for axiomatic deduction systems, "formal methods", or extensions to the model, and makes the specifications more faithful to engineering practice. While state machine maps are obvious representations of state machines, the techniques introduced here for defining and composing them are novel. To illustrate applications, the paper includes a fairly detailed specification and verification of the well-known "Paxos" distributed consensus algorithm plus a number of simpler examples including a digital PID controller.
Understanding the causal relationships among the variables of a system is paramount to explain and control its behaviour. Inferring the causal graph from observational data without interventions, however, requires a lot of strong assumptions that are not always realistic. Even for domain experts it can be challenging to express the causal graph. Therefore, metrics that quantitatively assess the goodness of a causal graph provide helpful checks before using it in downstream tasks. Existing metrics provide an absolute number of inconsistencies between the graph and the observed data, and without a baseline, practitioners are left to answer the hard question of how many such inconsistencies are acceptable or expected. Here, we propose a novel consistency metric by constructing a surrogate baseline through node permutations. By comparing the number of inconsistencies with those on the surrogate baseline, we derive an interpretable metric that captures whether the DAG fits significantly better than random. Evaluating on both simulated and real data sets from various domains, including biology and cloud monitoring, we demonstrate that the true DAG is not falsified by our metric, whereas the wrong graphs given by a hypothetical user are likely to be falsified.
Various notions of non-malleable secret sharing schemes have been considered. In this paper, we review the existing work on non-malleable secret sharing and suggest a novel game-based definition. We provide a new construction of an unconditionally secure non-malleable threshold scheme with respect to a specified relation. To do so, we introduce a new type of algebraic manipulation detection (AMD) code and construct examples of new variations of external difference families, which are of independent combinatorial interest.
Automated program repair is a crucial task for improving the efficiency of software developers. Recently, neural-based techniques have demonstrated significant promise in generating correct patches for buggy code snippets. However, most existing approaches arbitrarily treat the buggy context without any analysis to capture the semantic relationship between the buggy statement and its context. Additionally, we observe that existing neural models may output an unaltered patch consistent with the input buggy code snippet, which fails to be the correct human-written one for fixing the given bug. To address the aforementioned limitations, we present in this paper a novel neural program repair framework called \approach, which adapts the general pre-trained language model for fixing single-line Java bugs. We make the first attempt to use program slicing to extract contextual information directly related to the given buggy statement as repair ingredients from the corresponding program dependence graph and eliminate unaltered patches using an intuitive but effective filter mechanism. We demonstrate the effectiveness of \approach on five benchmarks when compared with state-of-the-art baselines.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.