亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a method to find appropriate outside views for sales forecasts of analysts. The idea is to find reference classes, i.e. peer groups, for each analyzed company separately. Hence, additional companies are considered that share similarities to the firm of interest with respect to a specific predictor. The classes are regarded to be optimal if the forecasted sales distributions match the actual distributions as closely as possible. The forecast quality is measured by applying goodness-of-fit tests on the estimated probability integral transformations and by comparing the predicted quantiles. The method is applied on a data set consisting of 21,808 US firms over the time period 1950 - 2019, which is also descriptively analyzed. It appears that in particular the past operating margins are good predictors for the distribution of future sales. A case study with a comparison of our forecasts with actual analysts' estimates emphasizes the relevance of our approach in practice.

相關內容

The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.

This paper investigates the effectiveness of systematically probing Google Trendsagainst textual translations of visual aspects as exogenous knowledge to predict the sales of brand-new fashion items, where past sales data is not available, but only an image and few metadata are available. In particular, we propose GTM-Transformer, standing for Google Trends Multimodal Transformer, whose encoder works on the representation of the exogenous time series, while the decoder forecasts the sales using the Google Trends encoding, and the available visual and metadata information. Our model works in a non-autoregressive manner, avoiding the compounding effect of the first-step errors. As a second contribution, we present the VISUELLE dataset, which is the first publicly available dataset for the task of new fashion product sales forecasting, containing the sales of 5577 new products sold between 2016-2019, derived from genuine historical data ofNunalie, an Italian fast-fashion company. Our dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state-of-the-art alternatives and numerous baselines, showing that GTM-Transformer is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% WAPE wise, showing the importance of exploiting Google Trends. The code and dataset are both available at //github.com/HumaticsLAB/GTM-Transformer.

Forecasting and forecast evaluation are inherently sequential tasks. Predictions are often issued on a regular basis, such as every hour, day, or month, and their quality is monitored continuously. However, the classical statistical tools for forecast evaluation are static, in the sense that statistical tests for forecast calibration are only valid if the evaluation period is fixed in advance. Recently, e-values have been introduced as a new, dynamic method for assessing statistical significance. An e-value is a non-negative random variable with expected value at most one under a null hypothesis. Large e-values give evidence against the null hypothesis, and the multiplicative inverse of an e-value is a conservative p-value. E-values are particularly suitable for sequential forecast evaluation, since they naturally lead to statistical tests which are valid under optional stopping. This article proposes e-values for testing probabilistic calibration of forecasts, which is one of the most important notions of calibration. The proposed methods are also more generally applicable for sequential goodness-of-fit testing. We demonstrate that the e-values are competitive in terms of power when compared to extant methods, which do not allow sequential testing. Furthermore, they provide important and useful insights in the evaluation of probabilistic weather forecasts.

Clinical trials with longitudinal outcomes typically include missing data due to missed assessments or structural missingness of outcomes after intercurrent events handled with a hypothetical strategy. Approaches based on Bayesian random multiple imputation and Rubin's rule for pooling results across multiple imputed datasets are increasingly used in order to align the analysis of these trials with the targeted estimand. We propose and justify deterministic conditional mean imputation combined with the jackknife for inference as an alternative approach. The method is applicable to imputations under a missing-at-random assumption as well as for reference-based imputation approaches. In an application and a simulation study, we demonstrate that it provides consistent treatment effect estimates with the Bayesian approach and reliable frequentist inference with accurate standard error estimation and type I error control. A further advantage of the method is that it does not rely on random sampling and is therefore replicable and unaffected by Monte Carlo error.

In some problem spaces, the high cost of obtaining ground truth labels necessitates use of lower quality reference datasets. It is difficult to benchmark model performance using these datasets, as evaluation results may be biased. We propose a supplement to using reference labels, which we call an approximate ground truth refinement (AGTR). Using an AGTR, we prove that bounds on specific metrics used to evaluate clustering algorithms and multi-class classifiers can be computed without reference labels. We also introduce a procedure that uses an AGTR to identify inaccurate evaluation results produced from datasets of dubious quality. Creating an AGTR requires domain knowledge, and malware family classification is a task with robust domain knowledge approaches that support the construction of an AGTR. We demonstrate our AGTR evaluation framework by applying it to a popular malware labeling tool to diagnose over-fitting in prior testing and evaluate changes whose impact could not be meaningfully quantified under previous data.

Analyzing the effect of business cycle on rating transitions has been a subject of great interest these last fifteen years, particularly due to the increasing pressure coming from regulators for stress testing. In this paper, we consider that the dynamics of rating migrations is governed by an unobserved latent factor. Under a point process filtering framework, we explain how the current state of the hidden factor can be efficiently inferred from observations of rating histories. We then adapt the classical Baum-Welsh algorithm to our setting and show how to estimate the latent factor parameters. Once calibrated, we may reveal and detect economic changes affecting the dynamics of rating migration, in real-time. To this end we adapt a filtering formula which can then be used for predicting future transition probabilities according to economic regimes without using any external covariates. We propose two filtering frameworks: a discrete and a continuous version. We demonstrate and compare the efficiency of both approaches on fictive data and on a corporate credit rating database. The methods could also be applied to retail credit loans.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, social media, and discussion board to forecast the stock trend in recent years. However, existing event-driven methods have two main shortcomings: 1) overlooking the influence of event information differentiated by the stock-dependent properties; 2) neglecting the effect of event information from other related stocks. In this paper, we propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods. To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts. To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks. The experimental studies on the real-world data demonstrate the efficiency of our REST framework. The results of investment simulation show that our framework can achieve a higher return of investment than baselines.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.

北京阿比特科技有限公司