Quantum computing promises an effective way to solve targeted problems that are classically intractable. Among them, quantum computers built with superconducting qubits are considered one of the most advanced technologies, but they suffer from short coherence times. This can get exaggerated when they are controlled directly by general-purpose host machines, which leads to the loss of quantum information. To mitigate this, we need quantum control processors (QCPs) positioned between quantum processing units and host machines to reduce latencies. However, existing QCPs are built on top of designs with no or inefficient scalability, requiring a large number of instructions when scaling to more qubits. In addition, interactions between current QCPs and host machines require frequent data transmissions and offline computations to obtain final results, which limits the performance of quantum computers. In this paper, we propose a QCP called HiSEP-Q featuring a novel quantum instruction set architecture (QISA) and its microarchitecture implementation. For efficient control, we utilize mixed-type addressing modes and mixed-length instructions in HiSEP-Q, which provides an efficient way to concurrently address more than 100 qubits. Further, for efficient read-out and analysis, we develop a novel onboard accumulation and sorting unit, which eliminates the data transmission of raw data between the QCPs and host machines and enables real-time result processing. Compared to the state-of-the-art, our proposed QISA achieves at least 62% and 28% improvements in encoding efficiency with real and synthetic quantum circuits, respectively. We also validate the microarchitecture on a field-programmable gate array, which exhibits low power and resource consumption. Both hardware and ISA evaluations demonstrate that HiSEP-Q features high scalability and efficiency toward the number of controlled qubits.
Although inverse kinematics of serial manipulators is a well studied problem, challenges still exist in finding smooth feasible solutions that are also collision aware. Furthermore, with collaborative and service robots gaining traction, different robotic systems have to work in close proximity. This means that the current inverse kinematics approaches have to not only avoid collisions with themselves but also collisions with other robot arms. Therefore, we present a novel approach to compute inverse kinematics for serial manipulators that take into account different constraints while trying to reach a desired end-effector position and/or orientation that avoids collisions with themselves and other arms. Unlike other constraint based approaches, we neither perform expensive inverse Jacobian computations nor do we require arms with redundant degrees of freedom. Instead, we formulate different constraints as weighted cost functions to be optimized by a non-linear optimization solver. Our approach is superior to the state-of-the-art CollisionIK in terms of collision avoidance in the presence of multiple arms in confined spaces with no detected collisions at all in all the experimental scenarios. When the probability of collision is low, our approach shows better performance at trajectory tracking as well. Additionally, our approach is capable of simultaneous yet decentralized control of multiple arms for trajectory tracking in intersecting workspace without any collisions.
Bayesian methods for solving inverse problems are a powerful alternative to classical methods since the Bayesian approach offers the ability to quantify the uncertainty in the solution. In recent years, data-driven techniques for solving inverse problems have also been remarkably successful, due to their superior representation ability. In this work, we incorporate data-based models into a class of Langevin-based sampling algorithms for Bayesian inference in imaging inverse problems. In particular, we introduce NF-ULA (Normalizing Flow-based Unadjusted Langevin algorithm), which involves learning a normalizing flow (NF) as the image prior. We use NF to learn the prior because a tractable closed-form expression for the log prior enables the differentiation of it using autograd libraries. Our algorithm only requires a normalizing flow-based generative network, which can be pre-trained independently of the considered inverse problem and the forward operator. We perform theoretical analysis by investigating the well-posedness and non-asymptotic convergence of the resulting NF-ULA algorithm. The efficacy of the proposed NF-ULA algorithm is demonstrated in various image restoration problems such as image deblurring, image inpainting, and limited-angle X-ray computed tomography (CT) reconstruction. NF-ULA is found to perform better than competing methods for severely ill-posed inverse problems.
Pre-defined manipulation primitives are widely used for cloth manipulation. However, cloth properties such as its stiffness or density can highly impact the performance of these primitives. Although existing solutions have tackled the parameterisation of pick and place locations, the effect of factors such as the velocity or trajectory of quasi-static and dynamic manipulation primitives has been neglected. Choosing appropriate values for these parameters is crucial to cope with the range of materials present in house-hold cloth objects. To address this challenge, we introduce the Quasi-Dynamic Parameterisable (QDP) method, which optimises parameters such as the motion velocity in addition to the pick and place positions of quasi-static and dynamic manipulation primitives. In this work, we leverage the framework of Sequential Reinforcement Learning to decouple sequentially the parameters that compose the primitives. To evaluate the effectiveness of the method we focus on the task of cloth unfolding with a robotic arm in simulation and real-world experiments. Our results in simulation show that by deciding the optimal parameters for the primitives the performance can improve by 20% compared to sub-optimal ones. Real-world results demonstrate the advantage of modifying the velocity and height of manipulation primitives for cloths with different mass, stiffness, shape and size. Supplementary material, videos, and code, can be found at //sites.google.com/view/qdp-srl.
Stochastic patrol routing is known to be advantageous in adversarial settings; however, the optimal choice of stochastic routing strategy is dependent on a model of the adversary. Duan et al. formulated a Stackelberg game for the worst-case scenario, i.e., a surveillance agent confronted with an omniscient attacker [IEEE TCNS, 8(2), 769-80, 2021]. In this article, we extend their formulation to accommodate heterogeneous defenses at the various nodes of the graph. We derive an upper bound on the value of the game. We identify methods for computing effective patrol strategies for certain classes of graphs. Finally, we leverage the heterogeneous defense formulation to develop novel defense placement algorithms that complement the patrol strategies.
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.
Originating from the diffusion phenomenon in physics that describes particle movement, the diffusion generative models inherit the characteristics of stochastic random walk in the data space along the denoising trajectory. However, the intrinsic mutual interference among image regions contradicts the need for practical downstream application scenarios where the preservation of low-level pixel information from given conditioning is desired (e.g., customization tasks like personalized generation and inpainting based on a user-provided single image). In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties and propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon given a pre-trained frozen diffusion model for versatile customization application scenarios, where the low-level pixel information from the conditioning needs to be preserved. Notably, unlike most current methods that incorporate additional conditions by fine-tuning the base text-to-image diffusion model or learning auxiliary networks, our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios in a learning-free manner. Extensive experiment results show that our proposed COW can achieve more flexible customization based on strict visual conditions in different application settings.
Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.
Temporal logic is an important tool for specifying complex behaviors of systems. It can be used to define properties for verification and monitoring, as well as goals for synthesis tools, allowing users to specify rich missions and tasks. Some of the most popular temporal logics include Metric Temporal Logic (MTL), Signal Temporal Logic (STL), and weighted STL (wSTL), which also allow the definition of timing constraints. In this work, we introduce PyTeLo, a modular and versatile Python-based software that facilitates working with temporal logic languages, specifically MTL, STL, and wSTL. Applying PyTeLo requires only a string representation of the temporal logic specification and, optionally, the dynamics of the system of interest. Next, PyTeLo reads the specification using an ANTLR-generated parser and generates an Abstract Syntax Tree (AST) that captures the structure of the formula. For synthesis, the AST serves to recursively encode the specification into a Mixed Integer Linear Program (MILP) that is solved using a commercial solver such as Gurobi. We describe the architecture and capabilities of PyTeLo and provide example applications highlighting its adaptability and extensibility for various research problems.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.