亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Energy harvesting battery-free embedded devices rely only on ambient energy harvesting that enables stand-alone and sustainable IoT applications. These devices execute programs when the harvested ambient energy in their energy reservoir is sufficient to operate and stop execution abruptly (and start charging) otherwise. These intermittent programs have varying timing behavior under different energy conditions, hardware configurations, and program structures. This paper presents Energy-aware Timing Analysis of intermittent Programs (ETAP), a probabilistic symbolic execution approach that analyzes the timing and energy behavior of intermittent programs at compile time. ETAP symbolically executes the given program while taking time and energy cost models for ambient energy and dynamic energy consumption into account. We evaluated ETAP on several intermittent programs and compared the compile-time analysis results with executions on real hardware. The results show that ETAP's normalized prediction accuracy is 99.5%, and it speeds up the timing analysis by at least two orders of magnitude compared to manual testing.

相關內容

Since the lack of IPv6 network development, China is currently accelerating IPv6 deployment. In this scenario, traffic and network structure show a huge shift. However, due to the long-term prosperity, we are ignorant of the problems behind such outbreak of traffic and performance improvement events in accelerating deployment. IPv6 development in some regions will still face similar challenges in the future. To contribute to solving this problem, in this paper, we produce a new measurement framework and implement a 5-month passive measurement on the IPv6 network during the accelerating deployment in China. We combine 6 global-scale datasets to form the normal status of IPv6 network, which is against to the accelerating status formed by the passive traffic. Moreover, we compare with the traffic during World IPv6 Day 2011 and Launch 2012 to discuss the common nature of accelerating deployment. Finally, the results indicate that the IPv6 accelerating deployment is often accompanied by an unbalanced network status. It exposes unresolved security issues including the challenge of user privacy and inappropriate access methods. According to the investigation, we point the future IPv6 development after accelerating deployment.

Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.

In this paper we generalize Dillon's switching method to characterize the exact $c$-differential uniformity of functions constructed via this method. More precisely, we modify some PcN/APcN and other functions with known $c$-differential uniformity in a controllable number of coordinates to render more such functions. We present several applications of the method in constructing PcN and APcN functions with respect to all $c\neq 1$. As a byproduct, we generalize some result of [Y. Wu, N. Li, X. Zeng, {\em New PcN and APcN functions over finite fields}, Designs Codes Crypt. 89 (2021), 2637--2651]. Computational results rendering functions with low differential uniformity, as well as, other good cryptographic properties are sprinkled throughout the paper.

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

Attention mechanisms, primarily designed to capture pairwise correlations between words, have become the backbone of machine learning, expanding beyond natural language processing into other domains. This growth in adaptation comes at the cost of prohibitively large memory requirements and computational complexity, especially at higher number of input elements. This limitation is due to inherently limited data reuse opportunities and quadratic growth in memory footprints, leading to severe memory-boundedness and limited scalability of input elements. This work addresses these challenges by devising a tailored dataflow optimization, called FLAT, for attention mechanisms without altering their functionality. This dataflow processes costly attention operations through a unique fusion mechanism, transforming the memory footprint quadratic growth to merely a linear one. To realize the full potential of this bespoke mechanism, we propose a tiling approach to enhance the data reuse across attention operations. Our method both mitigates the off-chip bandwidth bottleneck as well as reduces the on-chip memory requirement. Across a diverse range of models, FLAT delivers 1.94x (1.76x) speedup and 49% and (42%) of energy savings compared to the state-of-the-art edge (cloud) accelerators with no customized dataflow optimization. Our evaluations demonstrate that state-of-the-art DNN dataflows applied to attention operations reach the efficiency limit for inputs above 512 elements. In contrast, FLAT unblocks transformer models for inputs with up to 64 K elements in edge and cloud accelerators.

Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4

Unlike conventional cars, connected and autonomous vehicles (CAVs) can cross intersections in a lane-free order and utilise the whole area of intersections. This paper presents a minimum-time optimal control problem to centrally control the CAVs to simultaneously cross an intersection in the shortest possible time. Dual problem theory is employed to convexify the constraints of CAVs to avoid collision with each other and with road boundaries. The developed formulation is smooth and solvable by gradient-based algorithms. Simulation results show that the proposed strategy reduces the crossing time of intersections by an average of 52% and 54% as compared to, respectively, the state-of-the-art reservation-based and lane-free methods. Furthermore, the crossing time by the proposed strategy is fixed to a constant value for an intersection regardless of the number of CAVs.

We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced by Bailo, Carrillo, and Hu (2020). Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司