亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a methodology for modelling and simulating high-dimensional spatial precipitation extremes, using a combination of the spatial conditional extremes model, latent Gaussian models and integrated nested Laplace approximations (INLA). The spatial conditional extremes model requires data with Laplace marginal distributions, but precipitation distributions contain point masses at zero that complicate necessary standardisation procedures. We propose to model conditional extremes of nonzero precipitation only, while separately modelling precipitation occurrences. The two models are then combined to create a complete model for extreme precipitation. Nonzero precipitation marginals are modelled using a combination of latent Gaussian models with gamma and generalised Pareto likelihoods. Four different models for precipitation occurrence are investigated. New empirical diagnostics and parametric models are developed for describing components of the spatial conditional extremes model. We apply our framework to simulate spatial precipitation extremes over a water catchment in Central Norway, using high-density radar data. Inference on a 6000-dimensional data set is performed within hours, and the simulated data capture the main trends of the observed data well.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Tensor · 可約的 · 近似 · 模型評估 ·
2023 年 9 月 14 日

This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, our approach often reduces the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96% compared to the algorithm from [Gorodetsky, Karaman and Marzouk, Comput. Methods Appl. Mech. Eng., 347 (2019)] .

Current physics-informed (standard or operator) neural networks still rely on accurately learning the initial conditions of the system they are solving. In contrast, standard numerical methods evolve such initial conditions without needing to learn these. In this study, we propose to improve current physics-informed deep learning strategies such that initial conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a DeepONet is applied multiple times to time step a solution, the resulting function is continuous.

Auditory spatial attention detection (ASAD) aims to decode the attended spatial location with EEG in a multiple-speaker setting. ASAD methods are inspired by the brain lateralization of cortical neural responses during the processing of auditory spatial attention, and show promising performance for the task of auditory attention decoding (AAD) with neural recordings. In the previous ASAD methods, the spatial distribution of EEG electrodes is not fully exploited, which may limit the performance of these methods. In the present work, by transforming the original EEG channels into a two-dimensional (2D) spatial topological map, the EEG data is transformed into a three-dimensional (3D) arrangement containing spatial-temporal information. And then a 3D deep convolutional neural network (DenseNet-3D) is used to extract temporal and spatial features of the neural representation for the attended locations. The results show that the proposed method achieves higher decoding accuracy than the state-of-the-art (SOTA) method (94.4% compared to XANet's 90.6%) with 1-second decision window for the widely used KULeuven (KUL) dataset, and the code to implement our work is available on Github: //github.com/xuxiran/ASAD_DenseNet

Score-based methods for learning Bayesain networks(BN) aim to maximizing the global score functions. However, if local variables have direct and indirect dependence simultaneously, the global optimization on score functions misses edges between variables with indirect dependent relationship, of which scores are smaller than those with direct dependent relationship. In this paper, we present an identifiability condition based on a determined subset of parents to identify the underlying DAG. By the identifiability condition, we develop a two-phase algorithm namely optimal-tuning (OT) algorithm to locally amend the global optimization. In the optimal phase, an optimization problem based on first-order Hilbert-Schmidt independence criterion (HSIC) gives an estimated skeleton as the initial determined parents subset. In the tuning phase, the skeleton is locally tuned by deletion, addition and DAG-formalization strategies using the theoretically proved incremental properties of high-order HSIC. Numerical experiments for different synthetic datasets and real-world datasets show that the OT algorithm outperforms existing methods. Especially in Sigmoid Mix model with the size of the graph being ${\rm\bf d=40}$, the structure intervention distance (SID) of the OT algorithm is 329.7 smaller than the one obtained by CAM, which indicates that the graph estimated by the OT algorithm misses fewer edges compared with CAM.Source code of the OT algorithm is available at //github.com/YafeiannWang/optimal-tune-algorithm.

We consider the performance of Glauber dynamics for the random cluster model with real parameter $q>1$ and temperature $\beta>0$. Recent work by Helmuth, Jenssen and Perkins detailed the ordered/disordered transition of the model on random $\Delta$-regular graphs for all sufficiently large $q$ and obtained an efficient sampling algorithm for all temperatures $\beta$ using cluster expansion methods. Despite this major progress, the performance of natural Markov chains, including Glauber dynamics, is not yet well understood on the random regular graph, partly because of the non-local nature of the model (especially at low temperatures) and partly because of severe bottleneck phenomena that emerge in a window around the ordered/disordered transition. Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from worst-case starting configurations can be avoided by initialising the chain more judiciously. Our main result establishes this conjecture for all sufficiently large $q$ (with respect to $\Delta$). Specifically, we consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures $\beta$, including in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and Sinclair for the Ising model who obtained a similar-flavoured mixing-time bound on the random regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered transition and show spatial mixing properties "within the phase", which are then related to the evolution of the chain.

The physical and textural attributes of objects have been widely studied for recognition, detection and segmentation tasks in computer vision.~A number of datasets, such as large scale ImageNet, have been proposed for feature learning using data hungry deep neural networks and for hand-crafted feature extraction. To intelligently interact with objects, robots and intelligent machines need the ability to infer beyond the traditional physical/textural attributes, and understand/learn visual cues, called visual affordances, for affordance recognition, detection and segmentation. To date there is no publicly available large dataset for visual affordance understanding and learning. In this paper, we introduce a large scale multi-view RGBD visual affordance learning dataset, a benchmark of 47210 RGBD images from 37 object categories, annotated with 15 visual affordance categories. To the best of our knowledge, this is the first ever and the largest multi-view RGBD visual affordance learning dataset. We benchmark the proposed dataset for affordance segmentation and recognition tasks using popular Vision Transformer and Convolutional Neural Networks. Several state-of-the-art deep learning networks are evaluated each for affordance recognition and segmentation tasks. Our experimental results showcase the challenging nature of the dataset and present definite prospects for new and robust affordance learning algorithms. The dataset is publicly available at //sites.google.com/view/afaqshah/dataset.

High-order structures have been recognised as suitable models for systems going beyond the binary relationships for which graph models are appropriate. Despite their importance and surge in research on these structures, their random cases have been only recently become subjects of interest. One of these high-order structures is the oriented hypergraph, which relates couples of subsets of an arbitrary number of vertices. Here we develop the Erd\H{o}s-R\'enyi model for oriented hypergraphs, which corresponds to the random realisation of oriented hyperedges of the complete oriented hypergraph. A particular feature of random oriented hypergraphs is that the ratio between their expected number of oriented hyperedges and their expected degree or size is 3/2 for large number of vertices. We highlight the suitability of oriented hypergraphs for modelling large collections of chemical reactions and the importance of random oriented hypergraphs to analyse the unfolding of chemistry.

Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for other computational tasks on manifold as well, including interpolation tasks. In this work, we consider the application of retractions to the numerical integration of differential equations on fixed-rank matrix manifolds. This is closely related to dynamical low-rank approximation (DLRA) techniques. In fact, any retraction leads to a numerical integrator and, vice versa, certain DLRA techniques bear a direct relation with retractions. As an example for the latter, we introduce a new retraction, called KLS retraction, that is derived from the so-called unconventional integrator for DLRA. We also illustrate how retractions can be used to recover known DLRA techniques and to design new ones. In particular, this work introduces two novel numerical integration schemes that apply to differential equations on general manifolds: the accelerated forward Euler (AFE) method and the Ralston-Hermite (RH) method. Both methods build on retractions by using them as a tool for approximating curves on manifolds. The two methods are proven to have local truncation error of order three. Numerical experiments on classical DLRA examples highlight the advantages and shortcomings of these new methods.

We generalize K\"ahler information manifolds of complex-valued signal processing filters by introducing weighted Hardy spaces and smooth transformations of transfer functions. We prove that the Riemannian geometry of a linear filter induced from weighted Hardy norms for the smooth transformations of its transfer function is a K\"ahler manifold. Additionally, the K\"ahler potential of the linear system geometry corresponds to the square of the weighted Hardy norms of its composite transfer functions. Based on properties of K\"ahler manifolds, geometric objects on the manifolds of the linear systems in weighted Hardy spaces are computed in much simpler ways. Moreover, K\"ahler information manifolds of signal filters in weighted Hardy spaces incorporate various well-known information manifolds under the unified framework. We also cover several examples from time series models of which metric tensor, Levi-Civita connection, and K\"ahler potentials are represented with polylogarithms of poles and zeros from the transfer functions with weight vectors in exponential forms.

北京阿比特科技有限公司