亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a dimensionless anomaly detection method for multivariate streams. Our method is independent of the unit of measurement for the different stream channels, therefore dimensionless. We first propose the variance norm, a generalisation of Mahalanobis distance to handle infinite-dimensional feature space and singular empirical covariance matrix rigorously. We then combine the variance norm with the path signature, an infinite collection of iterated integrals that provide global features of streams, to propose SigMahaKNN, a method for anomaly detection on (multivariate) streams. We show that SigMahaKNN is invariant to stream reparametrisation, stream concatenation and has a graded discrimination power depending on the truncation level of the path signature. We implement SigMahaKNN as an open-source software, and perform extensive numerical experiments, showing significantly improved anomaly detection on streams compared to isolation forest and local outlier factors in applications ranging from language analysis, hand-writing analysis, ship movement paths analysis and univariate time-series analysis.

相關內容

We consider channel coding for discrete memoryless channels (DMCs) with a novel cost constraint that constrains both the mean and the variance of the cost of the codewords. We show that the maximum (asymptotically) achievable rate under the new cost formulation is equal to the capacity-cost function; in particular, the strong converse holds. We further characterize the optimal second-order coding rate of these cost-constrained codes; in particular, the optimal second-order coding rate is finite. We then show that the second-order coding performance is strictly improved with feedback using a new variation of timid/bold coding, significantly broadening the applicability of timid/bold coding schemes from unconstrained compound-dispersion channels to all cost-constrained channels. Equivalent results on the minimum average probability of error are also given.

In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (involved with solving a Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of $\pm 1$ for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.

In this paper, we discuss codes for distributed storage systems with hierarchical repair properties. Specifically, we devote attention to the repair problem of the rack-aware storage model with locality, aiming to enhance the system's ability to repair a small number of erasures within each rack by locality and efficiently handling a rack erasure with a small repair bandwidth. By employing the regenerating coding technique, we construct a family of array codes with $(r,u-r+1)$-locality, where the $u$ nodes of each repair set are systematically organized into a rack. When the number of failures is less than $u - r + 1$, these failures can be repaired without counting the system bandwidth. In cases where the number of failures exceeds the locality, the failed nodes within a single rack can be recovered with optimal cross-rack bandwidth.

In this paper we study the expectation maximization (EM) technique for one-bit MIMO-OFDM detection (OMOD). Arising from the recent interest in massive MIMO with one-bit analog-to-digital converters, OMOD is a massive-scale problem. EM is an iterative method that can exploit the OFDM structure to process the problem in a per-iteration efficient fashion. In this study we analyze the convergence rate of EM for a class of approximate maximum-likelihood OMOD formulations, or, in a broader sense, a class of problems involving regression from quantized data. We show how the SNR and channel conditions can have an impact on the convergence rate. We do so by making a connection between the EM and the proximal gradient methods in the context of OMOD. This connection also gives us insight to build new accelerated and/or inexact EM schemes. The accelerated scheme has faster convergence in theory, and the inexact scheme provides us with the flexibility to implement EM more efficiently, with convergence guarantee. Furthermore we develop a deep EM algorithm, wherein we take the structure of our inexact EM algorithm and apply deep unfolding to train an efficient structured deep net. Simulation results show that our accelerated exact/inexact EM algorithms run much faster than their standard EM counterparts, and that the deep EM algorithm gives promising detection and runtime performances.

Medical imaging diagnosis increasingly relies on Machine Learning (ML) models. This is a task that is often hampered by severely imbalanced datasets, where positive cases can be quite rare. Their use is further compromised by their limited interpretability, which is becoming increasingly important. While post-hoc interpretability techniques such as SHAP and LIME have been used with some success on so-called black box models, the use of inherently understandable models makes such endeavors more fruitful. This paper addresses these issues by demonstrating how a relatively new synthetic data generation technique, STEM, can be used to produce data to train models produced by Grammatical Evolution (GE) that are inherently understandable. STEM is a recently introduced combination of the Synthetic Minority Oversampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and Mixup; it has previously been successfully used to tackle both between class and within class imbalance issues. We test our technique on the Digital Database for Screening Mammography (DDSM) and the Wisconsin Breast Cancer (WBC) datasets and compare Area Under the Curve (AUC) results with an ensemble of the top three performing classifiers from a set of eight standard ML classifiers with varying degrees of interpretability. We demonstrate that the GE-derived models present the best AUC while still maintaining interpretable solutions.

In this paper, we propose an online-matching-based model to tackle the two fundamental issues, matching and pricing, existing in a wide range of real-world gig platforms, including ride-hailing (matching riders and drivers), crowdsourcing markets (pairing workers and tasks), and online recommendations (offering items to customers). Our model assumes the arriving distributions of dynamic agents (e.g., riders, workers, and buyers) are accessible in advance, and they can change over time, which is referred to as \emph{Known Heterogeneous Distributions} (KHD). In this paper, we initiate variance analysis for online matching algorithms under KHD. Unlike the popular competitive-ratio (CR) metric, the variance of online algorithms' performance is rarely studied due to inherent technical challenges, though it is well linked to robustness. We focus on two natural parameterized sampling policies, denoted by $\mathsf{ATT}(\gamma)$ and $\mathsf{SAMP}(\gamma)$, which appear as foundational bedrock in online algorithm design. We offer rigorous competitive ratio (CR) and variance analyses for both policies. Specifically, we show that $\mathsf{ATT}(\gamma)$ with $\gamma \in [0,1/2]$ achieves a CR of $\gamma$ and a variance of $\gamma \cdot (1-\gamma) \cdot B$ on the total number of matches with $B$ being the total matching capacity. In contrast, $\mathsf{SAMP}(\gamma)$ with $\gamma \in [0,1]$ accomplishes a CR of $\gamma (1-\gamma)$ and a variance of $\bar{\gamma} (1-\bar{\gamma})\cdot B$ with $\bar{\gamma}=\min(\gamma,1/2)$. All CR and variance analyses are tight and unconditional of any benchmark. As a byproduct, we prove that $\mathsf{ATT}(\gamma=1/2)$ achieves an optimal CR of $1/2$.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司