亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In psychiatric diagnosis, a contemporary data-driven, manual-based method for mental disorders classification is the most popular technique; however, it has several inevitable flaws. Using the three-way decision as a framework, we propose a unified model that stands for clinicians' subjective approach (CSA) analysis consisting of three parts: quantitative analysis, quantitative analysis, and evaluation-based analysis. A ranking list and a set of numerical weights based on illness magnitude levels according to the clinician's greatest degree of assumptions are the findings of the qualitative and quantitative investigation. We further create a comparative classification of illnesses into three groups with varying important levels; a three-way evaluation-based model is utilized in this study for the aim of understanding and portraying these results in a more clear way. This proposed method might be integrated with the manual-based process as a complementary tool to improve precision while diagnosing mental disorders

相關內容

Although significant progress has been made in developing methods for Grammatical Error Correction (GEC), addressing word choice improvements has been notably lacking and enhancing sentence expressivity by replacing phrases with advanced expressions is an understudied aspect. In this paper, we focus on this area and present our investigation into the task of incorporating the usage of idiomatic expressions in student writing. To facilitate our study, we curate extensive training sets and expert-annotated testing sets using real-world data and evaluate various approaches and compare their performance against human experts.

Recently, various intermediate layer distillation (ILD) objectives have been shown to improve compression of BERT models via Knowledge Distillation (KD). However, a comprehensive evaluation of the objectives in both task-specific and task-agnostic settings is lacking. To the best of our knowledge, this is the first work comprehensively evaluating distillation objectives in both settings. We show that attention transfer gives the best performance overall. We also study the impact of layer choice when initializing the student from the teacher layers, finding a significant impact on the performance in task-specific distillation. For vanilla KD and hidden states transfer, initialisation with lower layers of the teacher gives a considerable improvement over higher layers, especially on the task of QNLI (up to an absolute percentage change of 17.8 in accuracy). Attention transfer behaves consistently under different initialisation settings. We release our code as an efficient transformer-based model distillation framework for further studies.

Retrieval-based language models (LMs) have demonstrated improved interpretability, factuality, and adaptability compared to their parametric counterparts, by incorporating retrieved text from external datastores. While it is well known that parametric models are prone to leaking private data, it remains unclear how the addition of a retrieval datastore impacts model privacy. In this work, we present the first study of privacy risks in retrieval-based LMs, particularly $k$NN-LMs. Our goal is to explore the optimal design and training procedure in domains where privacy is of concern, aiming to strike a balance between utility and privacy. Crucially, we find that $k$NN-LMs are more susceptible to leaking private information from their private datastore than parametric models. We further explore mitigations of privacy risks. When privacy information is targeted and readily detected in the text, we find that a simple sanitization step would completely eliminate the risks, while decoupling query and key encoders achieves an even better utility-privacy trade-off. Otherwise, we consider strategies of mixing public and private data in both datastore and encoder training. While these methods offer modest improvements, they leave considerable room for future work. Together, our findings provide insights for practitioners to better understand and mitigate privacy risks in retrieval-based LMs. Our code is available at: //github.com/Princeton-SysML/kNNLM_privacy .

Contemporary face recognition (FR) models achieve near-ideal recognition performance in constrained settings, yet do not fully translate the performance to unconstrained (realworld) scenarios. To help improve the performance and stability of FR systems in such unconstrained settings, face image quality assessment (FIQA) techniques try to infer sample-quality information from the input face images that can aid with the recognition process. While existing FIQA techniques are able to efficiently capture the differences between high and low quality images, they typically cannot fully distinguish between images of similar quality, leading to lower performance in many scenarios. To address this issue, we present in this paper a supervised quality-label optimization approach, aimed at improving the performance of existing FIQA techniques. The developed optimization procedure infuses additional information (computed with a selected FR model) into the initial quality scores generated with a given FIQA technique to produce better estimates of the "actual" image quality. We evaluate the proposed approach in comprehensive experiments with six state-of-the-art FIQA approaches (CR-FIQA, FaceQAN, SER-FIQ, PCNet, MagFace, SDD-FIQA) on five commonly used benchmarks (LFW, CFPFP, CPLFW, CALFW, XQLFW) using three targeted FR models (ArcFace, ElasticFace, CurricularFace) with highly encouraging results.

Electroencephalogram (EEG) provides noninvasive measures of brain activity and is found to be valuable for diagnosis of some chronic disorders. Specifically, pre-treatment EEG signals in alpha and theta frequency bands have demonstrated some association with anti-depressant response, which is well-known to have low response rate. We aim to design an integrated pipeline that improves the response rate of major depressive disorder patients by developing an individualized treatment policy guided by the resting state pre-treatment EEG recordings and other treatment effects modifiers. We first design an innovative automatic site-specific EEG preprocessing pipeline to extract features that possess stronger signals compared with raw data. We then estimate the conditional average treatment effect using causal forests, and use a doubly robust technique to improve the efficiency in the estimation of the average treatment effect. We present evidence of heterogeneity in the treatment effect and the modifying power of EEG features as well as a significant average treatment effect, a result that cannot be obtained by conventional methods. Finally, we employ an efficient policy learning algorithm to learn an optimal depth-2 treatment assignment decision tree and compare its performance with Q-Learning and outcome-weighted learning via simulation studies and an application to a large multi-site, double-blind randomized controlled clinical trial, EMBARC.

Despite the success of neural networks, the issue of classification robustness remains, particularly highlighted by adversarial examples. In this paper, we address this challenge by focusing on the continuum of functions implemented in artificial neurons, ranging from pure AND gates to pure OR gates. Our hypothesis is that the presence of a sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks. We define AND-like neurons and propose measures to increase their proportion in the network. These measures involve rescaling inputs to the [-1,1] interval and reducing the number of points in the steepest section of the sigmoidal activation function. A crucial component of our method is the comparison between a neuron's output distribution when fed with the actual dataset and a randomised version called the "scrambled dataset." Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.

Text-based collaborative filtering (TCF) has become the mainstream approach for text and news recommendation, utilizing text encoders, also known as language models (LMs), to represent items. However, existing TCF models primarily focus on using small or medium-sized LMs. It remains uncertain what impact replacing the item encoder with one of the largest and most powerful LMs, such as the 175-billion parameter GPT-3 model, would have on recommendation performance. Can we expect unprecedented results? To this end, we conduct an extensive series of experiments aimed at exploring the performance limits of the TCF paradigm. Specifically, we increase the size of item encoders from one hundred million to one hundred billion to reveal the scaling limits of the TCF paradigm. We then examine whether these extremely large LMs could enable a universal item representation for the recommendation task. Furthermore, we compare the performance of the TCF paradigm utilizing the most powerful LMs to the currently dominant ID embedding-based paradigm and investigate the transferability of this TCF paradigm. Finally, we compare TCF with the recently popularized prompt-based recommendation using ChatGPT. Our research findings have not only yielded positive results but also uncovered some surprising and previously unknown negative outcomes, which can inspire deeper reflection and innovative thinking regarding text-based recommender systems. Codes and datasets will be released for further research.

Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.

Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司