Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore drastically decrease energy consumption when run on specialized hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable.
The analysis of survey data is a frequently arising issue in clinical trials, particularly when capturing quantities which are difficult to measure. Typical examples are questionnaires about patient's well-being, pain, or consent to an intervention. In these, data is captured on a discrete scale containing only a limited number of possible answers, from which the respondent has to pick the answer which fits best his/her personal opinion. This data is generally located on an ordinal scale as answers can usually be arranged in an ascending order, e.g., "bad", "neutral", "good" for well-being. Since responses are usually stored numerically for data processing purposes, analysis of survey data using ordinary linear regression models are commonly applied. However, assumptions of these models are often not met as linear regression requires a constant variability of the response variable and can yield predictions out of the range of response categories. By using linear models, one only gains insights about the mean response which may affect representativeness. In contrast, ordinal regression models can provide probability estimates for all response categories and yield information about the full response scale beyond the mean. In this work, we provide a concise overview of the fundamentals of latent variable based ordinal models, applications to a real data set, and outline the use of state-of-the-art-software for this purpose. Moreover, we discuss strengths, limitations and typical pitfalls. This is a companion work to a current vignette-based structured interview study in paediatric anaesthesia.
Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.
The computational demands of modern AI have spurred interest in optical neural networks (ONNs) which offer the potential benefits of increased speed and lower power consumption. However, current ONNs face various challenges,most significantly a limited calculation precision (typically around 4 bits) and the requirement for high-resolution signal format converters (digital-to-analogue conversions (DACs) and analogue-to-digital conversions (ADCs)). These challenges are inherent to their analog computing nature and pose significant obstacles in practical implementation. Here, we propose a digital-analog hybrid optical computing architecture for ONNs, which utilizes digital optical inputs in the form of binary words. By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced. The DACs for input data can be removed and the resolution of the ADCs can be greatly reduced. This can increase the operating speed at a high calculation precision and facilitate the compatibility with microelectronics. To validate our approach, we have fabricated a proof-of-concept photonic chip and built up a hybrid optical processor (HOP) system for neural network applications. We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8\times10^{-3}$ at an signal-to-noise ratio (SNR) of 18.2 dB. We have also implemented a convolutional neural network for handwritten digit recognition that shows the same accuracy as the one achieved by a desktop computer. The concept of the digital-analog hybrid optical computing architecture offers a methodology that could potentially be applied to various ONN implementations and may intrigue new research into efficient and accurate domain-specific optical computing architectures for neural networks.
Minimizers and convolutional neural networks (CNNs) are two quite distinct popular techniques that have both been employed to analyze categorical biological sequences. At face value, the methods seem entirely dissimilar. Minimizers use min-wise hashing on a rolling window to extract a single important k-mer feature per window. CNNs start with a wide array of randomly initialized convolutional filters, paired with a pooling operation, and then multiple additional neural layers to learn both the filters themselves and how they can be used to classify the sequence. Here, our main result is a careful mathematical analysis of hash function properties showing that for sequences over a categorical alphabet, random Gaussian initialization of convolutional filters with max-pooling is equivalent to choosing a minimizer ordering such that selected k-mers are (in Hamming distance) far from the k-mers within the sequence but close to other minimizers. In empirical experiments, we find that this property manifests as decreased density in repetitive regions, both in simulation and on real human telomeres. We additionally train from scratch a CNN embedding of synthetic short-reads from the SARS-CoV-2 genome into 3D Euclidean space that locally recapitulates the linear sequence distance of the read origins, a modest step towards building a deep learning assembler, though it is at present too slow to be practical. In total, this manuscript provides a partial explanation for the effectiveness of CNNs in categorical sequence analysis.
Sparsity is a highly desired feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models (due to the smaller number of relevant features), and robustness. In machine learning approaches based on linear models, it is well known that there exists a connecting path between the sparsest solution in terms of the $\ell^1$ norm,i.e., zero weights and the non-regularized solution, which is called the regularization path. Very recently, there was a first attempt to extend the concept of regularization paths to DNNs by means of treating the empirical loss and sparsity ($\ell^1$ norm) as two conflicting criteria and solving the resulting multiobjective optimization problem. However, due to the non-smoothness of the $\ell^1$ norm and the high number of parameters, this approach is not very efficient from a computational perspective. To overcome this limitation, we present an algorithm that allows for the approximation of the entire Pareto front for the above-mentioned objectives in a very efficient manner. We present numerical examples using both deterministic and stochastic gradients. We furthermore demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization.
Typical pipelines for model geometry generation in computational biomedicine stem from images, which are usually considered to be at rest, despite the object being in mechanical equilibrium under several forces. We refer to the stress-free geometry computation as the reference configuration problem, and in this work we extend such a formulation to the theory of fully nonlinear poroelastic media. The main steps are (i) writing the equations in terms of the reference porosity and (ii) defining a time dependent problem whose steady state solution is the reference porosity. This problem can be computationally challenging as it can require several hundreds of iterations to converge, so we propose the use of Anderson acceleration to speed up this procedure. Our evidence shows that this strategy can reduce the number of iterations up to 80\%. In addition, we note that a primal formulation of the nonlinear mass conservation equations is not consistent due to the presence of second order derivatives of the displacement, which we alleviate through adequate mixed formulations. All claims are validated through numerical simulations in both idealized and realistic scenarios.
Languages have long been described according to their perceived rhythmic attributes. The associated typologies are of interest in psycholinguistics as they partly predict newborns' abilities to discriminate between languages and provide insights into how adult listeners process non-native languages. Despite the relative success of rhythm metrics in supporting the existence of linguistic rhythmic classes, quantitative studies have yet to capture the full complexity of temporal regularities associated with speech rhythm. We argue that deep learning offers a powerful pattern-recognition approach to advance the characterization of the acoustic bases of speech rhythm. To explore this hypothesis, we trained a medium-sized recurrent neural network on a language identification task over a large database of speech recordings in 21 languages. The network had access to the amplitude envelopes and a variable identifying the voiced segments, assuming that this signal would poorly convey phonetic information but preserve prosodic features. The network was able to identify the language of 10-second recordings in 40% of the cases, and the language was in the top-3 guesses in two-thirds of the cases. Visualization methods show that representations built from the network activations are consistent with speech rhythm typologies, although the resulting maps are more complex than two separated clusters between stress and syllable-timed languages. We further analyzed the model by identifying correlations between network activations and known speech rhythm metrics. The findings illustrate the potential of deep learning tools to advance our understanding of speech rhythm through the identification and exploration of linguistically relevant acoustic feature spaces.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.